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Abstract 

 

Drylands (hyper-arid, arid, semi-arid and dry sub-humid areas) cover about 

47% of global land surface and harbour about 39% of the world´s population, 

encompassing the least developed countries, poorest and highly dependent on natural 

resources. The need to anticipate the impacts of climate change on drylands is 

indisputable due to their high vulnerability to climate and environmental changes 

(leading to desertification), as both disturbances are key threats to biodiversity and to 

ecolosystem services delivery, essential to human well-being. Diversity metrics 

(taxonomic and functional) are complementarily used to monitoring ecosystems’ 

response to climate. With this in mind the main aim of this thesis was to identify 

potential ecological indicators based on both taxonomic and functional plant 

diversity metrics, to be used as tools to monitor the effects of climate change on 

Tropical dry forest. Caatinga, one of the most diverse ecosystems in Neotropical 

seasonally dry forests, and more vulnerable to climate change in Brazil, was used as a 

case study. The aridity index was considered as an adequate variable to assess the 

effects of climate change on vegetation. In this study, a very rich database with 

information on the occurrence of around 1 000 plant species in this ecosystem was 

used. It contained data derived from different sources, collected with different sampling 

methodologies and sampling efforts in space and over time. By applying a re-sampling 

methodology, plant species abundance was estimated along a spatial climate gradient. 

This information is essential to assess the response of diversity metrics, especially 

those that require abundance data, such as functional metrics. Thirteen plant functional 

traits (PFT) were studied, which determine species’ responses to the environment, and 

allow to assess the response of functional metrics to climate. Of the 13 PFT studied, 

eight responded to aridity, which affected the functional structure of Caatinga 

vegetation. Clustering analysis based on the 13 PFT was used to group species into 

seven main functional groups responding to aridity. Functional groups with the 

presence of chemical defense and CAM (crassulacean acid metabolism) 

photosynthetic pathway were those whose relative abundance increased most with 

increasing aridity. Thus, they were proposed as ecological indicators to track aridity 

effects on the plant community functional structure. Based on the previously described 

results, a global analysis of complementary diversity metrics was made to assess the 

susceptibility of the plant community, from a taxonomic and functional point of view, 

along the aridity gradient. In more arid sites, there was a higher functional diversity 
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supported by a few plant species (low species richness) with unique functions, 

suggesting low resilience to environmental change. Contrastingly, less arid sites 

showed lower functional diversity but higher functional redundancy among species. 

Overall, this work’s findings support the use of complementary plant diversity metrics 

as warning ecological indicators of climate change impacts on the Caatinga ecosystem. 

In adition, the response of the plant community along the spatial climate gradient 

provides indications on how it might change over time under a global aridity increase, 

contributing to improve predictions on the effects of climate change. As projections are 

not very encouraging, it is crucial that we taxonomically and functionally conserve and 

restore these dry forests in order to mitigate the predicted negative impacts of climate 

change in the Caatinga ecosystem. 

 

Key-words: Brazilian Caatinga, climate change, diversity metrics, dryland ecology, 

plant functional traits 
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Resumo 

 

As terras secas (hiper-áridas, áridas, semi-áridas e sub-húmidas secas) 

cobrem cerca de 47% do globo terrestre e abrigam cerca de 39% da população 

mundial. Ocorrem maioritariamente em países menos desenvolvidos, mais pobres e 

altamente dependentes dos recursos naturais. A necessidade de antecipar os 

impactos das alterações climáticas nas terras secas é indiscutível devido à sua alta 

vulnerabilidade a alterações climáticas e ambientais (tendo como consequência a 

desertificação), já que ambas constituem importantes ameaças para a biodiversidade 

e para a prestação de serviços de ecossistema essenciais para o bem-estar humano. 

Métricas de diversidade (taxonómicas e funcionais) são usadas de forma 

complementar para monitorizar a resposta dos ecossistemas ao clima. Assim, o 

principal objetivo desta tese é identificar potenciais indicadores ecológicos, 

baseados métricas taxonómicas e funcionais, que possam ser usados como 

ferramentas para monitorizar os efeitos das alterações climáticas na Floresta 

tropical seca. A Caatinga, um dos ecossistemas mais diversos das Florestas 

Neotropicais sazonalmente secas, mas também dos mais vulneráveis às alterações 

climáticas no Brasil foi a área estudada. O índice de aridez foi considerado uma 

variável adequada para avaliar os efeitos das alterações climáticas na vegetação. Para 

este estudo, utilizamos um banco de dados muito rico com informações sobre a 

ocorrência de cerca de 1 000 espécies de plantas neste ecossistema, obtida a partir 

de dados provenientes de diferentes fontes, recolhidos com diferentes metodologias e 

esforços de amostragem no espaço e ao longo do tempo. Aplicando uma metodologia 

de reamostragem, a abundância de espécies de plantas foi estimada ao longo de um 

gradiente espacial de clima. Tais informações são essenciais para avaliar a resposta 

das métricas de diversidade, especialmente aquelas que requerem dados de 

abundância, como métricas funcionais. Foram estudadas 13 características funcionais 

da planta (CFP), que determinam as respostas das espécies ao meio ambiente e 

permitem avaliar a resposta das métricas ao clima. Das 13 CFP estudadas, oito 

responderam à aridez, que por sua vez afetou a estrutura funcional da vegetação da 

Caatinga. A análise de agrupamento com base nos 13 CFP foi usada para agrupar 

espécies em sete grupos funcionais principais que respondem à aridez. Os grupos 

caracterizados pela presença de defesas químicas e via fotossintética CAM 

(metabolismo ácido das crassuláceas) foram aqueles cuja abundância relativa 
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aumentou mais com o aumento da aridez. Assim, estes foram propostos como 

indicadores ecológicos para rastrear os efeitos a aridez na estrutura funcional da 

comunidade vegetal. Com base nos resultados descritos anteriormente, foi feita uma 

análise global de métricas complementares de diversidade para avaliar a 

suscetibilidade da comunidade de plantas, do ponto de vista taxonómico e funcional, 

ao longo do gradiente de aridez. Em locais mais áridos, verificou-se uma maior 

diversidade funcional suportada por algumas espécies de plantas (baixa riqueza de 

espécies) com funções únicas, sugerindo baixa resiliência. Em contraste, locais menos 

áridos mostraram menor diversidade funcional, mas maior redundância funcional entre 

as espécies. No geral, as conclusões deste trabalho apoiam o uso de métricas 

complementares de diversidade vegetal como indicadores ecológicos de alerta dos 

impactos das mudanças climáticas no ecossistema da Caatinga. Além disso, a 

resposta da comunidade vegetal ao longo do gradiente espacial do clima fornece 

indicações sobre possíveis alterações ao longo do tempo sob um aumento da aridez 

global, contribuindo para melhorar as previsões sobre os efeitos das alterações 

climáticas. Como as projeções não são muito animadoras, é fundamental que 

conservemos e restauremos taxonómica e funcionalmente estas florestas secas, a fim 

de mitigar os impactos negativos previstos das alterações climáticas no ecossistema 

da Caatinga. 

 

Palavras chave: Caatinga brasileira, alterações climáticas, métricas de diversidade, 

ecologia de terras secas, características funcionais de plantas 
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1 General Background 

 

1.1 Climate change and dryland systems 

Climate change is the variability of climate-defining variables that persist over a 

long period (minimum 30 years) and may have natural, anthropogenic causes or both 

(IPCC 2019). However, general circulation models simulating the behavior of the 

climate system indicate that part of the global climate change observed, especially in 

the last four decades, is caused by anthropogenic greenhouse gas (GHG) emissions 

(IPCC 2019). These gases change the atmosphere as well as its composition and 

hence the regulation of heat energy (Karl and Trenberth 2003; Fleming 2020).  

Future climate scenarios indicate changes in temperature regimes and rainfall 

patterns, but also a higher frequency of extreme weather phenomena such as more 

frequent and severe droughts (IPCC 2014). Thus, climate change will have mostly 

negative impacts on various natural and social systems, and can alarmingly impact 

global biodiversity (Bellard et al. 2012; Peñuelas et al. 2013).  

Since biodiversity is essential for ecosystem functioning (e.g. nutrient cycling, 

primary productivity, decomposition) it is legitimate to assume that the more diverse the 

ecosystem, the greater the ecosystem ability to maintain its processes and functions in 

the face of climate change (Hooper et al. 2005). In addition, the impacts of climate 

change on biodiversity can also be reflected in human livelihood and well-being 

(Mooney et al. 2009; Cardinale et al. 2012), because when ecosystems change to a 

different state, their ability to provide ecosystem services also changes (Carpenter et 

al., 2009). As a result, there is an urgent need to develop and implement adequate 

actions to reduce biodiversity vulnerability and increase resilience, especially in highly 

vulnerable ecosystems to climate change, such as drylands.    

Dryland systems are characterized by a combination of high evaporation, low 

rainfall, and human activities such as livestock grazing, the collection of wood and non-

wood forest products, fire use, and soil cultivation (Safriel et al. 2005; Pennington et al. 

2009; FAO 2019). These systems are found in most of the world´s terrestrial biomes 

and ecoregions and have a large proportion of common species and distinct habitats 

(Figure 1.1).  
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Drylands covered about 41% of terrestrial ecosystems up to 2007 (Reynolds et 

al. 2007) (Figure 1.2), which currently has increased to almost 47% (Koutroulis 2019) 

with an expected expansion up to 56% until 2100 (Huang et al. 2016).  Also, this cover 

may expand even more due to an aridity increase associated with climate change (Dai 

2011; Feng and Fu 2013; IPCC 2019). The population inhabiting drylands was 35% up 

to 2000 and this value increased to 39%, accompanying the terrestrial cover increase 

(Koutroulis 2019). 

 

 

 

 

Figure 1.1. World's ecorregions categorized within eight biogeographic realms. (Source: 
Millenium Ecosystem Assessment) 



1. General Background 

 

4 
 

 

 
 

Due to the multiplicity and complexity of the processes acting in these systems, 

the aridity index (AI) is widely used to classify the different drylands subtypes (Figure 

1.2). This index is calculated as the ratio of average annual precipitation and potential 

evapotranspiration (Thornthwaite 1948). Thus, the dryland system can be classified 

into four subtypes from less arid to more arid namely: (i) dry subhumid between 0.50 

and 0.65 AI; (ii) semi-arid represented by 0.20 to 0.50; (iii) arid from 0.05 to 0.20; and 

(iv) hyper-arid lower than 0.05 AI.  

Drylands show a gradient in primary productivity decreasing from dry subhumid, 

semi-arid, and arid to hyper-arid areas (Safriel et al. 2005). Population density within 

drylands increases with decreasing aridity from 71 persons per square kilometre in the 

dry sub-humid drylands to 10 persons in hyper-arid drylands. In parallel, with the 

decrease in aridity, there is a decrease in the sensitivity of dryland ecosystems to 

human impacts that contribute to land degradation. Within this context, the risk of land 

degradation is highest in the median section of the aridity gradient represented by 

semi-arid, where both population pressure (population density) and sensitivity to 

degradation are of intermediate values (Safriel et al. 2005). Consequently, all dryland 

subtypes, in particular the median section (semi-arid), are strongly vulnerable to 

climate and environmental changes, including desertification process (Figure 1.3).  

Figure 1.2.  Distribution of drylands around of the world, including four dryland systems that 
compose the aridity gradient (hyper-arid, arid, semi-arid and dry subhumid). (Extrated from 
https://www.ipcc.ch/srccl/chapter/chapter-3/) 
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1.2 Detecting climate change effects on diversity 

1.2.1 Diversity metrics 

There is a consensus that climate change will impact ecosystem structure and 

functioning (Maestre et al. 2012; Nunes et al. 2017; Berdugo et al. 2020). To develop 

actions for biodiversity conservation at a global, regional and local scales, as well as to 

analyse many questions in ecology, it is essential to know the biological diversity of 

ecosystems and, consequently, its functioning (Begon et al. 2007). 

Taxonomic and functional metrics, as biodiversity surrogates, have been suggested 

to be used to assess the impact of environmental drivers with different intensities, on 

biodiversity (Branquinho et al. 2019). Species richness is a classic example of 

traditional metrics (Cadotte et al. 2011). Normally, species richness, defined as the 

number of species in a certain area, is related to the distribution of the number of 

individuals among species that have been established in alpha (α), gamma (γ), and 

beta (β) diversity (Whittaker 1960; Magurran 2004). Alpha diversity is based on the 

Figure 1.3. Different scales of desertification vulnerability within dryland systems and other 
regions (Extracted from USDA-NRCS website) 
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total number of species at a local scale; while gamma diversity is based on the sum of 

species´ number recorded at a regional scale; beta diversity works at a global and/or 

regional scale and is the change of species among these communities/localities 

(Whittaker 1960; Magurran 2004).  

The abundance and equitability of each species are also included in taxonomic 

metrics as well as the Simpson index, which measures the probability that two random 

individuals in a community belong to the same species (Brower & Zarr 1984; Ricotta 

2005). However, these measures do not consider the functions of species within the 

ecosystem (Cianciaruso et al. 2009). For these reasons, the use of taxonomic metrics 

alone, may not capture key changes in plant communities, and their functional 

consequences, due to environmental changes (Ricotta, 2005).   

Due to the potential link to ecosystem functioning and maintenance, the inclusion of 

functional metrics has been complementary to traditional metrics in assessing the 

response of plant communities to environmental changes (Petchey and Gaston 2006; 

De Bello et al. 2007; Laliberte and Legendre 2010; Swenson and Weiser 2010; Pillar et 

al. 2013; Matos et al. 2017; Nunes et al. 2017; Sfair et al. 2018). Functional metrics 

have received increasing attention by encompassing morphological, behavioral, and 

ecological differences among individuals and species that can interfere with species 

growth, reproduction and survival (Violle et al. 2007; Swenson and Weiser 2010). 

Several functional metrics have been proposed over time from Rao´s quadratic entropy 

(Botta‐Dukát 2005) to indexes for different diversity components such as functional 

richness, evenness and divergence (Mouchet et al. 2010). Recently, an index called 

functional dispersion was proposed as a multivariate measure of species dispersion 

within the trait space, consisting of the mean distance of species to the community 

centroid, weighted by their abundances (Laliberté & Legendre, 2010).  

Another interesting metric is the weighting of the trait´s values of each species by 

their abundance in the community (community weighted mean – CWM). This allows us 

to identify the contribution of each trait within the community (Lavorel et al. 2008; Dias 

et al. 2013). This approach considers the biomass contribution of a given species 

within a community, assuming that the effects will be greater the greater their 

contribution (mass ratio hypothesis - Grime 1998). Conversely, when trait data include 

continuous values, the CWM corresponds to the trait value weighted by its relative 

abundance (Lavorel et al. 2008). To calculate these functional metrics, it is necessary 

to collect information about one or a set of functional traits, which are morphological, 

physiological and/or phenological features measured in each species or individuals 

(Canadell et al., 2007; Violle et al., 2007).  
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Plant functional traits have greatly improved the understanding of the effects of 

environmental changes on biodiversity and ecosystem functioning (Petchey and 

Gaston, 2006; Nunes et al., 2017). They are associated with plants´ adaptive strategies 

to climate, soil resources, disturbance (e.g. competition and land-use changes) and 

defense/protection needs (Cornelissen et al. 2003; Pérez-Harguindeguy et al. 2016). 

Hence, certain traits may be used to predict changes in environmental factors (Lavorel 

and Garnier 2002; Suding et al. 2008). For instance, plant traits such as growth form 

and leaf traits are associated with photosynthetic production and ecophysiological 

adaptation, e.g. to drought stress. Spinescence provides defense against herbivory 

while reducing heat or drought stress. The photosynthetic pathway (C3, C4 and CAM – 

Crassulacean acid metabolism) describes nutrient and water use efficiency. As well, 

the seed dispersal mode determines the distance species can cover (Cornelissen et al. 

2003; Pérez-Harguindeguy et al. 2013, 2016). 

Despite the success of functional diversity per se or together with traditional 

taxonomic metrics, these do not reflect the species´ abilities to ensure the maintenance 

of ecosystem processes e.g. if disturbances lead to species loss.  

Thus, functional redundancy has been proposed (Walker 1992; de Bello et al. 

2007). This metric has a relationship with species and functional diversity. That is, 

some species perform similar roles in communities and ecosystems, and redundant 

species can, therefore, be lost with minimal impact on ecosystem processes (Lawton 

and Brown 1994). Low redundancy occurs when there is a positive linear relationship 

between species and functional diversity because each species has a relatively unique 

trait (Petchey and Gaston 2006; Sasaki et al. 2009). This positive linear relationship 

indicates functional traits are lost or trait space dimensionality decreases from a system 

as species diversity declines (Petchey and Gaston 2006; Sasaki et al. 2009). This low 

redundancy indicates that ecosystem functioning is not robust concerning changes in 

diversity caused by environmental drivers (Petchey and Gaston 2006; Sasaki et al. 

2009). In contrast, high redundancy occurs when one new species with new and still 

unrepresented functional traits is added in the community. Thus, functional diversity 

may quickly increase at lower diversity levels and subsequently increase at declining 

rates as functional redundancy increases. High redundancy indicates high robustness 

in the ecosystem relative to environmental drivers (Petchey and Gaston 2006; Sasaki 

et al. 2009).  
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1.2.2 Abundance data to measure diversity metrics 

Most of the applications of biodiversity-based information require the use of 

abundance data (Mouillot et al. 2011; Maestre et al. 2012). It has been suggested that 

dominant species composing 80% of the relative abundance of a community 

(sometimes corresponding to a low number of species), can capture the main effects of 

environmental drivers on key ecosystem processes (Grime 1998; Lavorel and Garnier 

2002; Hooper et al. 2005). Yet, for large datasets, species abundance data is often not 

available. For instance, in biological research, the Global Biodiversity Information 

Facility (GBIF) is becoming a reference database for researchers, with records 

containing occurrences of hundreds of millions of species worldwide. Another example, 

specific for dryland ecosystems, is the Dryflor database, which has so far recorded the 

occurrence of 4 660 woody plants species, based on 835 inventories (Banda et al. 

2016). However, defining methodologies to transform basic-biodiversity occurrence 

data (e.g. species presence/absence) into abundance data to be used in many applied 

ecological studies, remains highly challenging regardless of has been a goal for a long-

time (Gleason, 1920; Conlisk et al. 2009). 

Several methods towards this end have been developed, including (i) 

regression approaches, using a truncated Poisson or negative binominal distribution 

methods (Augustin et al. 1998; He & Gaston 2000; Pearce & Boyce 2006; Conlisk et al. 

2009; Hwang & He 2011), (ii) methods based on the number of cells occupied in a 

rectangular grid (Gerrard & Chaing 1970; Kunin 1998; Joseph et al. 2006), (iii) the 

zero-inflated count model (Barry & Welsh 2002), and (iv) model count data, where a 

first model is fitted to account for occurrence, and then a second model follows  to 

show abundance once presence is predicted (Welsh et al. 1996; Guisan & Kienast 

1998). Nevertheless, these studies have not always been successful. They require 

knowledge on the average area occupied by an individual of a given pecies, but this 

information is rarely available. There is also a lack of knowledge about abundance 

levels associated with a given occurrence map. Since different species exhibit different 

distribution patterns - two species with the same total occupancy area can have 

different abundances for the number of occupied cells (Gaston 1996; Gaston et al. 

1998; Kunin 1998). Count data are difficult and expensive to collect for techniques that 

deal with overdispersion as a zero-inflated count model and count data model (Nielsen 

et al. 2005). 

 As more biodiversity-databases are available, the more we need to have tools to 

make the most of them, in terms of conservation and ecosystem functioning. These 
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datasets hold a lot of precious knowledge (Soranno et al. 2015) that needs to be 

worked out for different specific aims, and to address several societal challenges, from 

species conservation to ecosystem services provisioning. Added, the database should 

be considered as a shared knowledge about biodiversity that is necessarily collective 

(Canhos et al., 2006). Despite a large number of observations recorded and publication 

of results in the past centuries, in many cases primary observation and data collected 

are not disseminated among researchers in several fields of knowledge, which would 

also ensure their preservation for future generations (Canhos et al., 2006). Advancing 

information technology, data integration, and scientific communication have 

consolidated how biodiversity-change monitoring is performed (Pereira et al. 2013; 

Matos et al. 2017).  

 

1.2.3 Ecological indicators  

The term indicator is derived from the Latin word indicare that means to point or 

proclaim. An indicator is a cost-effective and valuable tool that allows summarizing a 

complex set of information retaining only the essential significance of the aspects being 

analyzed (Walz 2000; EPA-SAB 2002; Heink and Kowarik 2010). Good indicators 

should be distinguishable variables, easy to measure and to interpret, and 

representative of what will be evaluated (Rodrigues & Gandolfi, 2001). Additionally, 

ecological indicators should be effectively used to characterize, monitor and assess the 

impacts on biodiversity of several drivers as well as consider the re-establishment of 

ecosystems structure and functions (Block et al. 2001).  

This tool is widely used for the assessment of environmental conditions 

(Branquinho et al. 2015; Koch et al. 2016; Varela et al. 2018). The use of ecological 

indicators represents a scientific analysis with a numerical or descriptive categorization 

of environmental data and is often based on partial information that reflects the status 

of extensive ecosystems (Van Straalen 1998; Manoliadis 2002). The repeated use of 

ecological indicators in monitoring programs can assist, for example, in detecting 

environmental changes in early stages or assessing the efficiency of measures taken 

to improve environmental quality (Van Straalen 1998; Branquinho et al., 2015). In 

tropical forests, ecological indicators have been used to monitor ecologically restored 

areas and the estimators normally used are the diversity (e.g., richness and abundance 

of organisms and diversity of species within functional groups), vegetation structure 

(e.g., soil cover by vegetation and biomass) and ecological processes (e.g., nutrient 
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cycling, biological interactions and seed dispersal) (Belloto et al., 2009; Rodrigues et al. 

2011). 

 

1.2.4 Space-for-time approach  

The substitution of space-for-time is an alternative widely used in biodiversity 

modeling to infer past or future trajectories of ecological systems from spatial gradients 

(Gosz 1992; Blois et al. 2013; Matos et al. 2017; Nunes et al. 2017). In contrast, 

climatic projections based on time series data normally focus on structural and 

compositional features of systems neglecting spatial heterogeneity within sites as well 

as functional dynamics (Pickett 1989; Blois et al. 2013; Damgaard et al. 2019). The 

substitution of space-for-time assumes that time is a surrogate for an operational 

environment, and the past is a series of such environments (Pickett 1989).  

Even using both time series data and spatial gradient strategies, it is a huge 

challenge for the scientific community to detect the impacts of environmental and 

climate change on ecosystems at an early stage (Scheffer et al. 2009). This is 

particularly important when considering that recent studies have shown a short resilient 

period, the ghost period, before ecosystems transition from a favorable to an 

undesirable state (Vidiella et al. 2018). Moreover, ecosystems transition can be rapid or 

abrupt (Scheffer et al. 2001; Dakos et al. 2019). However, during a drought period, an 

area can be continuously disturbed and show little vegetation but still be able to 

recover after a rainy season. On the other hand, once it turns to desert, for example, it 

is nearly impossible to return to the previous state. In this situation, the new equilibrium 

state is adverse and improper for most species adapted to the previous state (Scheffer 

et al. 2009).  

A model by Vidiella et al. (2018) identified the short resilient period through soil 

degradation levels in a semi-arid ecosystem. During these periods, interventions aimed 

at the ecological restoration of these areas may be a successful strategy protecting 

drylands facing tipping points (Vidiella et al., 2018). To anticipate and identify these 

impacts, action can be taken to delay or stop the ecosystem change from a favorable 

to an undesirable state as well as increase the ecosystem resilience to climate change 

(Sousa-Silva et al. 2018). Therefore, it is urgent to overcome these challenges and to 

detect the impacts of environmental and climate change on ecosystems at an early 

stage to avoid irreversible damages. 
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1.3 Case study 

1.3.1 Caatinga – Seasonally dry tropical forest (SDTF)  

Caatinga is a Brazilian ecosystem that covers 912 529 km2, corresponding to 11% 

of Brazil (da Silva et al. 2018). The name “Caatinga” originated from the indigenous 

word Caá-Tinga (white woods) to distinguish this vegetation - without leaves in the dry 

season - from other types of vegetation (Prado 2003). Despite the name Caatinga 

having persisted to this day, during the 19th century Carl Friedrich von Martius 

recognized this ecosystem as a phytogeographical unit and called it the “Kingdom of 

Hamadryades”. This name symbolizes the nymphs that emerged from a period of 

depression, after rains, giving rise to festive moments and temporary pleasure 

(Ab´Saber, 2003).  

This Brazilian ecosystem shows high spatial heterogeneity due to habitat and 

temporal heterogeneity associated with climate, which results in higher floristic 

diversity, physiognomies and community structure (Andrade-Lima 1981; Araújo et al. 

2005; Rodal et al. 2008). Its floristic composition changes from open vegetation 

dominated by herbaceous and shrubs species in rocky outcrops of the driest areas to 

semi-deciduous forests dominated by woody species in richer and wetter soils 

(Fernandes and Queiroz 2018). This heterogeneous environment results in an 

ecosystem with high species turnover forming an ecological pattern of community 

structure organization (Banda et al. 2016). Indeed, species turnover in the environment 

can occur because of historical and spatial restrictions, interspecific interactions, or due 

to the wide variety of randomly occurring species (Baselga 2010).  

These characteristics make Caatinga the most diverse seasonally dry tropical forest 

ecosystem, housing 1 112 plant species (Banda et al., 2016). Fabaceae is the richest 

family followed by Euphorbiaceae, Malvaceae, and Asteraceae (Moro et al. 2014). Of 

the 1 112 plant species, around 30% are endemic (Giulietti et al., 2002).  Cactaceae is 

the most notable example of high endemism in Caatinga, with 50% of its species being 

unique to this ecosystem (Fernandes and Queiroz 2018). Moreover, 350 of the species 

present are considered endangered and a conservation priority by the Brazilian 

Ministry of Environment, Cactaceae being the most threatened (Giulietti et al. 2002; 

MMA 2016).   

Caatinga aggregates a wide structural variety and complex floristic composition, 

adapted to the existing climate and geoenvironment (Queiroz 2006). In general, plants 
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in this ecosystem have adaptive strategies to survive in the semi-arid environment, 

such as: i) small plants due to water deficit along the year, resulting in discontinuous 

plant´s growth; ii) shrub and trees with spinescence against pathogens and herbivorous 

as well as reduced water loss; iii) succulent plants that retain water, ensuring their 

survival during dry seasons; v) plants with short reproductive cycles (annual); vi) foliage 

with strong deciduous character in response to a long period of water deficit; and; vii) 

pinnate or twice pinnate leaves, corresponding to small photosynthetic units (Rizzini 

1997; Prado 2003; Paganucci de Queiroz 2006) (Figure 1.4).   

 

Figure 1.4. A brief illustration of structural variety from Caatinga, which has: (i) irregular 
seasonal vegetation influenced by climatic variability (1 and 2); (ii) many vegetation types such 
as open vegetation (3 and 4); (iii)  a majority low vertical structure (3); (iv) adaptive strategies to 
survive in the semi-arid environment (e.g.; Crassulacean acid metabolism (CAM – 4), annual 
plants (5), spinescence (6), twice pinnate leaves (7), plants with leaves arranged in a rosette 
(8). 

 

Despite its singular representativeness and great importance, Caatinga is the least 

known, studied and protected among Brazilian ecosystems, and has been scientifically 

neglected for many years (Santos et al. 2011; Moro et al. 2016). Although there is a 

considerable number of very recent works (e.g., Sfair et al. 2018; Silva and Souza 

2018; Pinho et al. 2019; Ribeiro et al. 2019). The lack of knowledge about this 

ecosystem could be associated with its high irregular seasonal vegetation implying 

continuous sampling efforts and/or a low number of research teams or senior 

researchers in the region (Santos et al. 2011; Da Costa et al. 2015). The lack of 

protected status for Caatinga is associated with an unknown and strong dependence 
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on its natural resources by populations living in this ecosystem (Banda et al. 2016; 

Sfair et al. 2018). In addition, the region suffers from a lack of public policies that would 

ensure sustainable development and, consequently, increases the threat to Caatinga 

conservation (Santos et al. 2011; Melo 2018). 

Caatinga’s main threats with potentially irreversible impacts, are human activities 

and climate change (Ribeiro-Neto et al. 2016; da Silva and Barbosa 2018). In 

Caatinga, human activities increased significantly with the colonization of this 

ecosystem by the first Europeans who landed in Brazil. These activities included the 

killing of indigenous people to conquer space for large settlements dedicated to 

subsistence agriculture, and livestock farming along large rivers (Hemming, 1978; 

Puntoni, 2002). Since then, agricultural activities forward-looking family production 

have often been associated with low technological methods showing an absence of 

conservationist soil management practices (Sfair et al. 2018). Grazing has been 

highlighted as the main livestock farming since colonization. In 2017, nine million goats, 

able to eat all plant parts (i.e., from flower to litter) were estimated to live in Caatinga, 

endangering the composition, dynamics, and functioning of this ecosystem (Guimarães 

Filho and Goes, 1998).  

In addition, native vegetation extraction is another human activity that threatens 

Caatinga, with millions of cubic meters of native vegetation being consumed all year in 

the region. This consumption is mainly associated with firewood and coal production 

that support steel production and plaster factories (Ramos et al., 2014; Albuquerque et 

al. 2018). At the same time, Caatinga is one of the ecosystems that show higher 

vulnerability to the negative impacts of any climatic variability (i.e. reduction or long 

periods without rainfall) (da Silva et al. 2018). Caatinga threats and vulnerabilities to 

climate change have already been identified and are further described below. 

Extremely long drought periods such as the one that occurred between 2010 and 2016, 

clearly demonstrated the vulnerability of this ecosystem and its population to climate 

change, with serious socio-economic and environmental consequences (Alvalá et al. 

2017; Buriti and Barbosa 2018; Marengo Orsini et al. 2018). Drought conditions occur 

typically in Caatinga, but they have recently become more frequent and prolonged 

(Buriti and Barbosa 2018). According to climate projections, the future of this 

ecosystem is threatened as a temperature increase in Caatinga is expected by 2100 

(IPCC 2011). Climatic projections also indicate a reduction in rainfall (Magrin et al. 

2014; Buriti and Barbosa 2018).  

Anthropogenic actions and climate change together may facilitate the process of 

erosion, productivity decrease, aggravating the soils’ environmental degradation. 
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Reducting leaf deposition on the soil surface can unprotect it from direct solar radiation 

and increase the direct impact of rainwater on exposed soil, thus favouring erosion 

processes, and decreasing nutrients deposition (i.e. carbon and nitrogen) (Bochet et al. 

2006; Zuazo and Pleguezuelo 2009). Furthermore, these factors can accelerate the 

desertification process in this ecosystem which already includes more than 60% of the 

areas susceptible to desertification in Brazil (Hauff 2010) (Figure 1.5).   
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Figure 1.5. Desertification map in the semi-arid from Brazil. (Source: Lapis – Laboratório de 
Análise e Processamento de Imagens de Satélites). Legend: Areas susceptible to 
desertification (ASD) – blue areas are moderately susceptible; yellow areas are strongly 
susceptible; red areas are extremely susceptible. Black outline limits the semi-arid region 
under analysis; with area represents Brazil country limits. 
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1.4 Objectives and structure of the thesis 

It is a consensus that the increase in aridity associated with climate change can 

lead to biodiversity change and loss. Having this in mind, we proposed a general 

question, can we develop ecological indicators of the impacts of climate change 

on the structure and functioning of Tropical dry forest based on both taxonomic 

and functional plant biodiversity metrics? Given this narrative, the main objective 

of this study was to identify potential ecological indicators based on both 

taxonomic and functional plant diversity metrics which can be used as tools to 

monitor the effects of climate change on Tropical dry forest.  

 The thesis is structured in six chapters (Figure 1.6). The General Background 

(Chapter 1) frames the problematic of the effects of climate change on the diversity of 

dryland systems, while addressing the need to assess the response of plant diversity 

metrics to track and anticipate these effects on this ecosystem. A brief description of 

the tropical dry forest (Brazilian Caatinga) is given in the introduction. 

 As more biodiversity-databases are available, the more we need to have tools 

to make most of them, in terms of conservation and ecosystem functioning. To 

evaluate trends in biodiversity change, species abundance is required. Yet, for large 

datasets, species abundance data is often not available. Thus, estimating abundance 

from presence-absence data is a crucial step to track biodiversity changes. However, 

estimating it from presence data, particularly at wider scales, remains a challenge. This 

challenge gains even greater importance for areas that have remarkably high 

biodiversity, as is the case of Caatinga, a Neotropical seasonally dry forests. We had 

available a database with information of more than 1 000 plant species of Caatinga 

collected since 2008 by University of Vale do São Francisco (UNIVASF). Yet, this 

database lacked information on species abundances. In Chapter 2 we aimed at 

developing tools to transform species presence/absence data into estimations of 

species abundance. Specifically we followed the following steps: 1) develop and apply 

a re-sampling methodology to estimate species abundance from species presence/ 

absence data; 2) improve and evaluate abundance data reliability for further ecological 

interpretation, by focusing on sites with a minimum sampling effort and on plant 

species with a minimum number of occurrences along the study area; 3) compare the 

taxonomic diversity and composition of the databases obtained from the previous 

steps, including the proportion of endemism and exotic species, to evaluate their 
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potential to support Caatinga’s plant conservation strategies and studies on ecosystem 

structure and functioning. 

 Drylands are experiencing an overall increase in aridity that is predicted to 

intensify in the future due to climate change. This may cause changes in the structure 

and functioning of dryland ecosystems, affecting ecosystem services and human well-

being. Therefore, detecting early signs of ecosystem change before irreversible 

damage takes place is important. In Chapter 3 we used a space-for-time substitution 

approach to study the response of the plant community to aridity in a Tropical dry forest 

(Caatinga, Brazil), and infer potential consequences of climate. We addressed thirteen 

functional traits related to plant strategies to deal with water limitations. We 

hypothesized that aridity is a strong environmental filter acting on the functional 

structure of plant communities in this tropical dry forest. We expect to find i) an 

increase in the relative abundance of drought-adapted traits towards stress-avoidant 

strategies (e.g., summer deciduousness) and ii) a reduction in functional diversity for 

most traits as a result of climatic filtering.  

To find tools to early detect the effects of increasing aridity on ecosystems is 

extremely urgent to avoid irreversible damage. In this context the use of plant 

functional groups (groups of species sharing the same traits) might have some interest. 

In chapter 4, we aim at identifying the Caatinga’s main plant functional groups based 

on multiple traits and assess changes in functional groups abundance along a spatial 

gradient of aridity (aridity index between 0.27 and 0.69) in a tropical dry forest 

(Caatinga). Our objective was to assess changes in plant community functional 

structure along a spatial aridity gradient in tropical dry forest, by grouping plant species 

into functional groups base on multiple traits. The interpretation of the functional 

group’s patterns along the aridity gradients could be used to track climate change 

impacts over time. 

There are several biodiversity-based metrics to describe the ecosystem structure 

and functioning. Taxonomic diversity metrics provide strong evidence that diversity 

promotes ecosystem stability and functioning, contributing significantly to many 

ecosystem services. Even so, taxonomic metrics consider all species and individuals 

as equivalents disregarding e.g. their functional role and how they affect ecosystem 

functioning. The study of species functional traits allows to overcome this limitation, 

providing a more mechanistic link between species and multiple ecosystem functions. 

Additionally, functional redundancy can be used as a measure of detecting potential 

loss of species that carry out unique roles in important ecosystem processes as well as 

reorganization and renovation of the ecosystem after the disturbance, which can 
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significantly affect and change ecosystem functioning. Due to the complementary 

character of these metrics, it is important to evaluate how they change along 

environmental gradients, and how can we interpret the observed patterns to better 

anticipate changes in the structure and functioning of the ecosystems to be studied 

over time. Thus, in Chapter 5 we aim at assessing changes in plant taxonomic and 

functional diversity metrics along a spatial aridity gradient in the Caatinga ecosystem, 

assuming that these can give indications about climate change impacts over time. We 

hypothesized that complementary diversity metrics will respond differently to aridity in 

this tropical dry forest, namely that with increasing aridity we will find: (i) a decrease in 

species richness to only those highly adapted to drought; (ii) a decrease in functional 

diversity due to environmental filtering; (iii) an increase in functional redundancy 

between species sharing the same drought-adapted traits. 

The thesis ends with a General Discussion (Chapter 6) considering the 

implications and opportunities these results have anticipating future impacts of climate 

change on drylands. In this chapter new perspectives on the potential of diversity 

metrics as universal indicators to monitor and track the responses of drylands to 

climate change are also pointed out and future challenges and research lines that can 

be drawn from this work are identified.  
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Figure 1.6. Framework of the thesis. 
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2 From species presences to abundances: using 
unevenly collected plant species presences to 
disclose the structure and functioning of a dryland 
ecosystem   

 

2.1 Abstract 

 

Species abundance data is essential to understand ecosystems structure and 

functioning and to support species and habitat conservation. However, most regional to 

global databases provide only presence or presence/absence data. The main aim of 

this paper is to develop a methodology to estimate plant species abundances from a 

presence/absence database using as a case-study the largest and one of the most 

diverse tropical dry forest of the world – the understudied, Caatinga vegetation, that 

dominates in the drylands of Brazil. Plant data missed abundance estimations and 

derived from different sources, with uneven sampling efforts over space and time. 

Starting from the raw data, we considered only the presence records of terrestrial plant 

individuals identified to the species-level. Afterwards, we applied the re-sampling 

method to estimate species abundances thus obtaining database DB1. To deal with the 

uneven sampling effort along the study area and increase information reliability, we 

filtered DB1 in two ways: (i) we excluded re-sampling units with a lower sampling effort 

and produced the Database DB2; (ii) we excluded low occurrence species and build - 

Database DB3. The reliability of the databases was compared by calculating a 

measure of their completeness. DB1 had 789 species over 323 sampling units, DB2 

retained 530 species distributed in 38 sampling units, and DB3 retained 48 species 

over 113 sampling units. In DB1 and DB2, despite the different number of species 

considered, the percentage of exotic (7%), endemism (14%), woody (44%), climber 

(12%), and herbaceous species (45%) was similar. DB3 included only native species 

(no exotic species) and displayed a higher percentage of endemism (29%) and woody 

species (79%), and a lower proportion of herbaceous species (21%) than DB1 and 

DB2. The databases obtained provide an important basis to improve Caatinga 

ecological knowledge and conservation: we suggest the use of DB2 to support 

conservation strategies, and of DB3 to support ecosystem structure and functioning 

studies. Moreover, the re-sampling methodology proposed to estimate plant 

abundances from presence data, dealing with uneven sampling efforts across large 



2. From species presences to abundances: Using unevenly collected plant species presences 
to disclose the structure and functioning of a dryland ecosystem 

37 
 

areas and over time, provides an important tool that may be used to obtain abundance 

data, often essential to the development of plant-based indicators of ecosystem 

structure and functioning, and to support conservation studies.  

 

Keywords: Caatinga; Conservation; Ecosystem functioning; Regional plant database; 

Re-sampling; Uneven sampling effort. 

 

2.2 Introduction 

 

As more biodiversity-databases are available, the more we need to have tools to 

make most of them, in terms of conservation and ecosystem functioning. These 

datasets hold a lot of precious knowledge (Soranno et al. 2015) that needs to be 

worked out for different specific aims, to address the main societal challenges, from 

species conservation to ecosystem services provisioning. To evaluate trends in 

biodiversity change, species abundance is required (Mouillot et al. 2011; Maestre et al. 

2012). Yet, for large datasets, species abundance data is often not available. For 

instance, the Global Biodiversity Information Facility (GBIF), which is a reference 

database in biological research has mainly occurrence data for a vast number of 

species. Thus, estimating abundance from presence-absence data is a crucial step to 

track biodiversity changes (Gleason, 1920; Conlisk et al. 2009) especially in the face of 

Earth global change (Cadotte et al. 2011). 

Several methods toward this end were developed, such as (i) regression 

approaches, using a truncated Poisson or negative binominal distribution (Augustin et 

al. 1998; He & Gaston 2000; Pearce & Boyce 2006; Conlisk et al. 2009; Hwang & He 

2011), (ii) methods based on the number of occupied cells of a rectangular grid 

(Gerrard & Chaing 1970; Kunin 1998; Joseph et al. 2006), (iii) the zero-inflated count 

model (Barry & Welsh 2002), and (iv) model count data, where a first model is fitted to 

account for occurrence, and then a second model follows to show abundance once 

presence is predicted (Welsh et al. 1996; Guisan & Kienast 1998). However, these 

methods have limitations. Most of them require knowledge on the average area 

occupied per individual of a species, but this information is rarely available and/or 

brings additional challenges. For instance, two species having the same total area of 

occupancy (i.e. number of occupied cells) can have different abundances (i.e. the 
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number of individuals per area) (Gaston 1996; Gaston et al. 1998; Kunin 1998). Count 

data are difficult and expensive to collect in the case of techniques that deal with 

overdispersion as zero-inflated count model and models count data (Nielsen et al. 

2005). Hence, estimating species abundances from presence data, particularly at wider 

scales, remains a challenge. 

This challenge gains even greater importance for areas that have remarkably high 

biodiversity, as is the case of Neotropical seasonally dry forests. In these regions, 

limited by water availability, more than 4 600 species of woody plants have already 

been recorded together with a high number of endemic species and high floristic 

turnover (i.e. beta-diversity) (Banda et al. 2016). Additionally, several works have been 

arguing that 80% of the relative abundance of a community, usually the most abundant 

species, are able to capture the main effects of environmental drivers on key 

ecosystem processes, following the mass ratio hypothesis (Grime 1998; Lavorel & 

Garnier 2002; Hooper et al. 2005). Understanding the relation between environmental 

drivers and key ecosystem processes is essential in  Neotropical seasonally dry forests 

because they (i) are among the most threatened tropical dry forest in the world (Miles 

et al. 2006); (ii) are highly fragmented with less than 10% of its original extent 

remaining in many countries (García Millán et al. 2014; Banda et al. 2016), (iii) have a 

population highly dependent on resources associated with its biodiversity, and (iv) 

suffer from the lack of scientific knowledge and public policies able the ensure a 

sustainable development in the region (IPCC 2011, 2014; Santos et al. 2011). 

Caatinga is one of the most plant diverse of the Neotropical seasonally dry forest 

(Pennington et al. 2009; Portillo-Quintero & Sánchez-Azofeifa 2010; Banda et al., 

2016) with more than 1 112 plant species (Banda et al., 2016) of which ca. 30% are 

endemic (Giulietti et al. 2002). This semi-arid ecosystem with peculiar flora within 

Neotropical seasonally dry forest is the most vulnerable one to climate change  in 

Brazil (Sarmiento 1975; da Silva et al. 2018). In 2100 in Caatinga, temperature is 

expected to increase between 4ºC to 18ºC (IPCC, 2011), and rainfall is predicted to be 

reduced in 22% (Magrin et al. 2014) to 40% (Buriti & Barbosa 2018). Climate change 

together with anthropogenic activities may lead to a decrease in productivity in these 

ecosystems aggravating further land degradation. Furthermore, these factors can 

speed up the desertification process taking place in this ecosystem, which already 

affects more than 60% of the areas susceptible to desertification in Brazil (da Silva & 

Barbosa 2018). This will result in the loss of forest products (e.g., wood and forage) 

and ecosystem services (e.g., nutrient cycling, protection and restoration of soil fertility) 

that may affect 28.6 million people highly dependent on local natural resources 
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(Tabarelli et al. 2017). Taking into account the threats that this unique ecosystem faces 

in the near future, it is urgent to better understand Caatinga´s ecosystem structure and 

functioning, as an essential basis to develop strategies and policies for its conservation 

and restoration. For Caatinga, a database with information on about 1 000 plant 

species was collected since 2008 by University of Vale do São Francisco (UNIVASF) 

(data not published). Yet, this database is limited to species presence/absence data, 

lacking information on species abundances. Additionally, this database resulted from 

data derived from different sources, collected with different sampling methodologies 

and sampling efforts in space and over time.Thus, we need to develop tools to work out 

this data and transform species presence/absence data into estimations of species 

abundance, to support Caatinga’s plant diversity conservation that needs to be put in 

place urgently, together with knowledge about its ecosystem structure and function. In 

this context, we make use of Caatinga’s plant database to meet the following 

objectives: 1) develop and apply a re-sampling methodology to estimate species 

abundance from species presence/absence data; 2) improve and evaluate abundance 

data reliability for further ecological interpretation, by focusing on sites with a minimum 

sampling effort (minimum number of plant species recorded) and on plant species with 

a minimum number of occurrences along the study area; 3) compare the taxonomic 

diversity and composition of the databases obtained from the previous steps, including 

the proportion of endemism and exotic species, to evaluate their potential to support 

Caatinga´s plant conservation strategies and studies on ecosystem structure and 

functioning.  

 

2.3 Methods 

 

Study area     

This study was carried out in Caatinga, a semi-arid seasonally dry tropical forest of 

Brazil. It covered a spatial area with 700 Km including four Brazilian states (Ceará, 

Paraíba, Pernambuco and Rio Grande do Norte) (Figure 2.1). 
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Raw database description  

The raw database used in the present study comes from a series of plant surveys 

led by the Centre for Ecology and Environmental Monitoring (NEMA) based at the 

University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil. NEMA, 

under the impact assessment study of the São Francisco River Integration Project 

(PISF), is responsible for two environmental programs in the Caatinga ecosystem 

region: i) the conservation of flora and, ii) the restoration of degraded areas. In this 

sense, UNIVASF has been collecting information about Caatinga vegetation since 

2008. This information comprises georeferenced individuals´ presence for aquatic and 

terrestrial flora, totalizing 24 317 individuals surveyed to date. The information is 

collected following a sampling scheme of 0,2o x 0,2o virtual grid squares corresponding 

to 22 x 22 Km squares, ensuring that all squares are visited (Figure 2.1A). From all the 

data collected by UNIVASF, for this paper, we used the information collected in three 

different surveys. Survey A) Presence of plant species from 2008-2012. This survey 

followed a floristic inventory methodology, comprising 212 field expeditions with visits 

five times per week, 6-8h per day, walking randomly within the systematically defined 

grid squares described previously, in an area from 1 400 to 1 900 Km per week to 

A B 

Figure 2.1. A) Location of the area in north-eastern Brazil surveyed by Centre for Ecology and 
Environmental Monitoring (NEMA), based at the University of Vale do São Francisco (Univasf), 
Petrolina, Pernambuco, Brazil (see legend colours for different aridity levels); B) Grid of 10 x 10 Km 
sampling units superimposed over the sampling sites (open dots) surveyed by NEMA.   

 



2. From species presences to abundances: Using unevenly collected plant species presences 
to disclose the structure and functioning of a dryland ecosystem 

41 
 

register the presence of all woody and herbaceous plant species and record their GPS 

location. This survey represented ca. 82% of data collected by NEMA until 2012 (more 

information in Siqueira Filho, 2012); Survey B) Presence of new plant species from 

2012-2015. The sampling methodology was like the formerly described, but here only 

new species that were not previously recorded within each grid squares were 

registered using the same method. This survey represented ca. 18% of the data 

collected for this paper; Survey C) Abundance of plant species. This survey was 

done in 135 permanent plots of 10 x 10 m located within the 22 x 22 Km grid squares. 

The abundance monitoring survey was done twice per year from January 2008 to July 

2015, and all individuals were recorded and, species abundance estimated. However, 

in this case, contrary to what happened in the previous surveys, only shrub and tree 

species (woody species) were recorded. 

 

Estimating plant abundance from presence/absence data   

 

From the raw database, we excluded all the species classified as aquatic and semi-

aquatic, since the focus of this paper was terrestrial plant diversity. The plant 

individuals not identified to the species-level were also excluded. This selection 

resulted in the first database called DB1, which only accounts for species presences.  

Afterwards, a re-sampling methodology was applied to the DB1 database. This re-

sampling methodology was intended to deal with possible problems resulting from data 

derived from different sources, with different sampling intensities over space and 

mostly missing abundance. To re-sample, a sampling unit of 10 x 10 Km (Figure 2.2) 

divided into 25 sampling quadrats of 2 x 2 Km side was superimposed on the study 

region. For each 10 Km sampling unit we calculated species abundance, using the 

presence of the species in the 25 2 x 2 Km sampling quadrats, weighted by the 

sampling effort within that sampling unit. For that, the following steps were taken.  

Species presence in each small quadrat (2 x 2 Km) were considered as frequency. 

If a species was recorded more than once in a small sampling quadrat (2 x 2 Km), it 

counted only once. The sum of all frequencies of the 25 2 x 2 Km sampling quadrats in 

the larger 10 x 10 Km sampling unit corresponded to species abundance. Hence, the 

maximum abundance that a species can have within 10 x 10 Km sampling units is 25, if 

that species was present in all quadrats visited. We assumed that if in a sampling 

quadrat (2 x 2 Km), at least one species was registered, then all species were 

searched for in that quadrat. Thus, if a species was not registered in a sampling 
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quadrat, then that species was considered absent, and thus with an abundance of 

zero. This assumption is reasonable because fieldwork was done through systematic 

visits to the region, assuring that all sampling quadrats were visited (Figure 2.2).  

 

Figure 2.2. Re-sampling example. Left: the three coloured shapes represent species presences 
registered in a sampling region in grey; Centre: the 2 Km squares represent the sampling 
quadrats and the 10 Km squares the sampling units; Right: the grey represent the sampled 
quadrats, the number of quadrats occupied by each species within each sampling unit divided 
by the number of sampled quadrats represents species abundance, which is provided in 
percentage (%).   

 

Improving abundance data reliability  

As a measure of quality control, DB1 species richness was calculated for each 

sampling unit (data not shown). We found a strong positive correlation (Spearman 

correlation) between species richness and the number of sampling quadrats sampled 

(p-value < 0.001; data not shown). 

To reduce the level of “uncertainty” in DB1 and consequently high the level of 

“completeness” due to unbalanced sampling efforts between sampling units, two 

databases were created from DB1. This was done, to i) ensure a minimum number of 

species per sampling unit, by removing under-sampled units (DB2); and ii) retain only 

species present in a minimum number of sampling units, removing rare species (DB3) 

(see Figure 2.3). DB2 was called “without undersampled sites” and resulted from the 

exclusion of sampling units (10 x 10 Km) with less than 35 species recorded. This 

threshold corresponded to the median value of species richness in DB1. DB3 was 

called “without rare species” and resulted from the exclusion of species with a very low 

occurrence, recorded in less than 5% of DB1 sampling units. 
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To assess the “reliability” of the database produced, we calculated a measure of 

sampling completeness for each one of the databases, to account for the uneven 

sampling effort between sampling units. This completeness measure corresponds to 

the number of quadrats visited divided by 25 (the maximum number of sampling 

quadrats within each sampling unit) and was mapped for all databases (Figure 2.3). 

The higher the number of quadrats sampled within each sampling unit, the higher its 

completeness.  

 

Figure 2.3. Map showing sampling completeness of DB1, DB2 and DB3. Sampling 
completeness corresponds to the number of sampling quadrats (2 x 2 km) visited per sampling 
unit (10 x 10 Km) out of the total number of possible quadrats (25). This information was 
superimposed to the sampling sites belonging to each database. 

 

Data analysis   

For each of the three databases, we compared the taxonomic diversity and 

composition to (i) understand the effects of excluding data from sampling sites or rare 

species and (ii) describe the potential of the abundance data of DB2 and DB3 for 

studying Caatinga ecosystem structure and functioning. For that, we calculated species 

richness, beta diversity and the partition of composition dissimilarity (beta diversity) into 

species turnover and nestedness (Baselga 2010). To calculate the partition of 
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composition dissimilarity we used the method developed by Baselga and co-authors 

(2010, 2012). This method proposes that global beta diversity (βsor), calculated using 

the Sorensen Index (Sørensen 1948), can be mathematically decomposed into the 

dissimilarity index of Simpson – βsim and nestedness – βnes. The first represents the 

spatial substitution of species (turnover), and nestedness a new index of dissimilarity 

resulting from the sequential loss of species between samples. This was done using 

the “beta.multi-function” of the betapart package (Baselga et al. 2018) in R (R Core 

Team 2018).  

In addition, we calculated the proportion of endemism, exotic species, species 

from the Fabaceae family and the community structure. Fabaceae was highlighted 

because of its importance to the functioning ecosystems by symbiotic nitrogen fixation 

(Dovrat & Sheffer 2019; Jaiswal & Dakora 2019). Community structure was here 

assessed as a proportion of each growth form in each database: trees, shrubs, climber 

and herbaceous species. These proportions correspond to the ratio of the number of 

species in each case divided by total species richness. Categorization into exotic 

species, endemism and growth form was done using bibliographical references (A. M. 

Giulietti et al. 2002; Moro et al. 2014, 2016) and the Lista de Espécies da Flora do 

Brasil (Flora do Brasil 2020 2018) that have information on geographical distribution, 

environment, growth form and pictures of about 41 000 Brazilian species.  

 

2.4 Results 

 

Plant abundance databases and their reliability    

Three new abundance databases were produced from the raw presence 

database through the re-sampling methodology applied. The first database, DB1, 

showed more species, but less completeness and more rare species than both DB2 

and DB3. DB1 contains 789 species corresponding ca. 85% of recorded in the raw 

database and distributed in 323 sampling units. The level of sampling completeness in 

DB1 was of 38% of the sampling units visited more than twice (Figure 2.3 and 2.4).  

DB2 showed more species, more completeness and more rare species than 

DB3. Excluding sampling units with less than 35 species recorded, the DB2 retained 

530 species corresponding to ca. 67% of the species recorded in DB1 and distributed 



2. From species presences to abundances: Using unevenly collected plant species presences 
to disclose the structure and functioning of a dryland ecosystem 

45 
 

in 38 sampling units. The level of sampling completeness in DB2 was 95% of the 

sampling units visited more than twice (Figure 2.3 and 2.4).  

Excluding species recorded in less than 5% of sampling units, the database 

DB3 had fewer species than DB1 and DB2 that corresponded to ca. 6% (=48 species) 

of the species recorded in DB1, distributed in 113 sampling units. The level of sampling 

completeness in DB3 was 75% (Figure 2.3 and 2.4).  

 

 

Figure 2.4. The workflow performed on the original Nema presence database (Center for 
Ecology and Environmental Monitoring, Federal University of Vale do São Francisco) to obtain 
the abundance databases that better allow the interpretation of the most important plant species 
for both conservation and the structure and functioning of the Caatinga’s ecosystem. The 
number of sampling units, individuals and species included in each database are indicated. 
DB1, the base of the other two databases, was obtained after the exclusion of aquatic species 
and indeterminate individuals. DB2 was obtained after the exclusion of sampling units with less 
than 35 species recorded in DB1 (“without under sampled units”). DB3 was obtained after the 
exclusion of species recorded in less than 5% of the sampling units in DB1 (“without rare 
species”).  

 

Vegetation composition patterns obtained from abundance database   

In DB1 and DB2, Fabaceae was the most represented family with 150 and 99 

species, respectively, followed by Euphorbiaceae and Malvaceae (42 and 33 species 

respectively), Rubiaceae (33 and 20 species, respectively), and Asteraceae (32 and 20 

species, respectively). In DB3, Fabaceae also was the most represented family (13 
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species) but followed by Cactaceae (8 species), Euphorbiaceae and Bromeliaceae (6 

species each) and Anacardiaceae (3 species).    

In DB1 and DB2, despite the different number of species considered, the 

percentage of exotic (7%), endemism (14%), woody (44%), climber (12%), and 

herbaceous species (45%) was similar (Table 2.1). DB3 included only native species 

and displayed a higher percentage of endemism (29%) and woody species (79%), a 

lower proportion of herbaceous species (21%) whereas climber species were absent 

(Table 2.1). The Fabaceae family showed the highest number of endemic species in all 

databases 25, 14 and 4 in DB1, DB2 and DB3, respectively (Table 2.1). In the three 

databases, the species turnover (Beta.Sim) at the regional scale was above 90%, 

whereas species nestedness (Beta.SNE) was lower than 0.1% (Table 2.1). 

   

Table 2.1.  Description of vegetation composition in DB1, DB2 and DB3 databases: number of 
individuals; species richness (number of species); number of genus, number of families; number 
and proportion of exotic species number and proportion of  endemism; number and proportion 
of  trees; number and proportion of  shrubs; number and proportion of climbers; number and 
proportion of herbaceous species; beta diversity partitioning values (Beta.Sor = overall beta 
diversity; Beta.Sim = turnover; Beta.SNE = nestedness); proportion of Fabaceae family. The 
number of sampling units of each database are also given.  

 

Database´s Description DB1 DB2 DB3 

Sampling units Number of sampling units 323 38 113 

Taxonomic composition 

and diversity 
Number of individuals 5235 2111 1867 

 Species richness 789 530 48 

 Number of genus 453 350 43 

  Number of families 102 89 17 

Beta diversity 

partitioning 

Beta.Sor (overall beta 

diversity) 
0.993 0.948 0.97 

 Beta.Sim (turnover) 0.986 0.928 0.950 

 Beta.SNE (nestedness) 0.007 0.020 0.020 

Community nativeness Exotic species 53 (7%) 36 (7%) 0 

 Endemism 108 (14%) 70 (13%) 14 (29%) 

Community structure Trees 172 (22%) 121 (23%) 26 (54%) 

 Shrubs 164 (21%) 111 (21%) 12 (25%) 

 Climber 98 (12%) 59 (11%) 0 

 Herbaceous 357 (45%) 241 (45%) 10 (21%) 

Fabaceae 
Number of species from 

the Fabaceae 
149 (19%) 99 (19%) 13 (27%) 
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2.5 Discussion 

 

Improving abundance data reliability 

In this paper, we were able to use species presence data collected over a large 

area and over time, by different observers to estimate plant species abundance. These 

new plant abundance databases obtained with the re-sampling methodology, provide 

an important basis to address the conservation of the unique dryland ecosystem of 

Caatinga regarding plant species. They are also essential to study the structure and 

functioning of the ecosystems which depend not only on the type of species present in 

the plant community but largely on their abundance.  

The resulting dataset with plant species abundance showed different levels of 

confidence, depending on the sampling effort. Those sampling units with a higher 

sampling effort, i.e. where more quadrats were visited and/or visited more often, 

showed higher confidence in richness and abundance data, than the sampling units 

with a lower sampling effort. In order to improve data reliability overall, we produced the 

DB2 database by selecting only the units with a minimum number of species recorded 

(exclusion of under sampled units), resulting in higher species richness distributed in a 

lower number of sampling units than DB3. This dataset DB2 is optimized to be used for 

biodiversity conservation purposes since we can identify biodiversity hotspots in space 

and the presence of certain rare species.  

Another point to consider is the role of chance in the detection of species during 

surveys performed by different observers and over large periods of time. In our case, 

sampling took place from 2008 to 2015, when a considerable inter and intra-annual 

climatic variability was observed. Ephemeral species, such as the majority of the 

herbaceous species in Caatinga, may be present at one date and not a few days or 

weeks after. This may create “false” dissimilarities between sampling units in species 

presence, just because they were sampled at different times and/or different seasonal 

conditions. Thus, to avoid this “stochastic” pattern, we removed the less abundant 

(rare) species and produced the DB3. Therefore, DB3 has a lower number of species 

(the most common) covering more sampling units than DB2.  

The reliability of the databases derived from DB1, measured by their level of 

completeness, showed that this was improved considerably in DB2 and DB3 (95% and 

75%, respectively) in relation to that of DB1 (38%) 
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Abundance data insights into vegetation composition patterns 

  

In accordance with other studies in other dryland ecosystems (Banda et al. 

2016), in this paper, we found high species turnover associated with DB2 and DB3 

databases. Although both databases showed a high species turnover, we suggest that 

the factors behind this turnover are different in the two databases (DB2 and DB3). The 

turnover observed in DB2 could be mainly associated with the temporal dynamics of 

plant species, whereas the one associated with DB3 could be mainly associated with 

spatial heterogeneity. In fact, the plants in DB2 were only observed in 38 sampling 

units whereas the ones in DB3 were observed in 113 sampling units. In this way, DB3 

covers a larger spatial area and consequently higher spatial range of environmental 

variation than DB2, justifying in this way the high turnover. Other authors also state that 

spatial heterogeneity in Caatinga results from the interplay between different 

environmental factors (Rizzini 1997; Andradre-Lima 1981; Araújo et al. 2005), such as 

temperature, precipitation, and soil type, which create gradients in resource availability 

(Borchert 1994), that are reflected in the mosaic of different physiognomies (Prado 

2003; Andrade-Lima 1981). On the other hand, DB2 showed to have 45% of 

herbaceous plants. These plants have a small vegetative period, being present only in 

a small part of the year which could not match the sampling of the plants in field 

conditions. Additionally, the sampling period in the field occurred during several years 

(from 2008 to 2015), that is likely to have encompassed a considerable inter-annual 

meteorological variability that promoted different herbaceous plant species. According 

to other authors (Reis et al 2006; Silva et al. 2013), this climatic variability promotes 

changes in the structure and floristic composition of the herbaceous component over 

time, leading to higher diversity than that of the woody component (Moro et al. 2014). 

These facts support the idea that the high turnover observed in DB2 could be mainly 

associated with temporal dynamics of the plant community. 

 

Abundance data insights into Caatinga conservation 

 

DB1 contains more species than any of the others. Thus, whenever a complete 

species inventory is required this database should be used. This can be important in 

conservation studies when the aim is to provide conservation guidelines for as many 

species as possible. However, this higher number of species considered, comes at the 

expense of sampling completeness, implying lower reliability in abundance estimates. 
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Thus, suggesting costly conservation measures in a scenario of limited resources for 

species with high uncertainty in abundance estimates may be inadvisable. An 

alternative in such case is to use database DB2, which excluded under-sampled units 

and thus showed a lower level of uncertainty than DB1.  

Besides taxonomic composition, the presence of endemism, native and exotic 

species and species turnover are essential to determine the plant patterns in 

neotropical dry forests (including the Caatinga), as well as in other biomes, and their 

conservation implication (Banda et al. 2016). In our study, taxonomic composition 

concerning the main botanical families followed the expected floristic patterns for 

Caatinga (Giulietti et al. 2004; Giulietti et al. 2006; Moro et al. 2014; Sampaio 1995). All 

databases can be used to describe Caatinga plant communities in terms of species 

composition, turnover, and endemism. The high proportion of endemism in the three 

databases reflects the uniqueness of Caatinga vascular plants, as previously described 

by Giulietti et al. (2002) and Flora do Brasil 2020 (2018). 

 

Abundance data insights into Caatinga ecosystem structure and functioning  

 

The DB3 database comprised the 48 most common and dominant perennial 

plant species in Caatinga. The diversity and abundance of dominant plants in a 

community are ecological surrogates of key ecosystem functions and ecosystem 

services (Martínez-Mena et al. 2002; Delgado-Baquerizo et al. 2013; Gaitán et al. 

2014). Additionally, the contribution for the structure and functioning of Caatinga of 

perennial plant species, which are dominant in DB3, may be constant over time, 

particularly during the growing season when the vegetative and reproductive structures 

are present and fully developed. Contrastingly, for ephemeral plant species, present 

mostly in DB1 and DB2, the growing season may vary with time (Pérez-Harguindeguy 

et al. 2013). In this sense, the species included in the DB3 database can be considered 

as the ones contributing most to ensure the structure and functioning of Caatinga.  

Finally, we acknowledge that the re-sampling methodology used in this paper to 

estimate species abundances from presence data was done at the expense of spatial 

resolution. Thus, it has limitations concerning the distribution of species at local spatial 

scales (under 10 Km), e.g. to understand the effect of local environmental factors such 

as altitude or aspect on the plant community (Príncipe et al. 2014, 2019). Nevertheless, 

it is an important tool for researchers focusing on the development of plant-based 

indicators of ecosystems structure and functioning in drylands, and on promoting their 
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conservation since it can also be used for similar datasets collected over large areas 

where only plant species presence is available. 

 

Concluding Remarks   

 

In synthesis, we were able to estimate plant species abundance from 

presence/absence data, dealing with unevenly sampled large areas, to support in 

biodiversity conservation studies and evaluate ecosystem structure and functioning. 

We provide species abundance data for Brazilian Caatinga, one of the most threatened 

and understudied dryland ecosystems of the world. In this context, our paper gives a 

pivotal contribution to address this knowledge gap, providing a critical baseline for 

future and urgent studies on Caatinga conservation and ecological knowledge, on 

which depends the wellbeing of local population which is highly dependent on local 

natural resources. Moreover, the re-sampling methodology developed in this paper can 

be applied in other similar plant databases from large areas, built using different 

methodologies and sampling efforts, to estimate species abundance from presence 

data. Consequently, this re-sampling methodology is an important tool to support 

studies on ecosystems structure and functioning worldwide and promote their 

conservation.  
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3 The response of plant functional traits to aridity in a 
Tropical dry forest   

 

3.1 Abstract 

 

Drylands are experiencing an overall increase in aridity that is predicted to 

intensify in the future due to climate change. This may cause changes in the structure 

and functioning of dryland ecosystems, affecting ecosystem services and human well-

being. Therefore, detecting early signs of ecosystem change before irreversible 

damage takes place is important. Thus, here we used a space-for-time substitution 

approach to study the response of the plant community to aridity in a Tropical dry forest 

(Caatinga, Brazil), and infer potential consequences of climate change. We assessed 

plant functional structure using the community weighted mean (CWM) and functional 

diversity, measured through functional dispersion (FDis), along a 700 km climatic 

gradient. We studied 13 functional traits, reflecting strategies associated with 

establishment, defense, regeneration, and dispersal of the most abundant 48 plant 

species in 113 sampling sites. Spearman correlations were used to test the relation 

between aridity and single-trait functional metrics. Aridity was a major environmental 

filter of the plant community functional structure. We found a higher abundance of 

species with deciduous leaves, zoochorous dispersal, fleshy fruits, chemical defense 

exudation and spinescence, and crassulacean acid metabolism towards more arid 

sites, at the expense of species with evergreen and thicker leaves, autochory dispersal, 

and shrub growth-form. The FDis of leaf type and thickness decreased with aridity, 

whereas FDis of fruit type, photosynthetic pathway, and defense strategies increased. 

Our findings provide functional indicators to early detect climate change impacts on 

Caatinga structure and functioning, to timely adopt preventive measures (e.g. 

conservation of forest remnants) and restoration actions (e.g. introduction of species 

with specific functional traits) in this threatened and unique ecosystem. 

 

Keywords: Caatinga; climatic gradient; drylands; ecosystem functioning; functional 

diversity; space-for-time substitution 
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3.2 Introduction 

Drylands cover almost 47% of terrestrial ecosystems with an expected 

expansion up to 56% until 2100 (Huang et al., 2016), due to a global increase in aridity 

associated with climate change (Pour, Wahab and Shahid, 2020). This increase in 

aridity will impact ecosystem structure and functioning, affecting the delivery of 

ecosystem services and human well-being of at least 39% of the world´s population 

currently living in drylands (Koutroulis, 2019). Therefore, it is essential to monitor 

changes in ecosystem structure and functioning due to climate, to timely adopt 

measures able to ensure the maintenance of key ecosystem services to population.  

One way to monitor the structure and functioning of terrestrial ecosystems is by 

using plant biodiversity components as indicators of specific ecosystem functions 

(Branquinho et al., 2019).  The approaches based on plant functional traits have greatly 

improved the understanding of the effects of environmental change on biodiversity and 

ecosystem functioning (De Bello et al., 2010; Nunes et al., 2017) since they are 

associated with plants´ adaptive strategies to respond to climate, soil resources, 

disturbance (e.g. competition and land use changes) and defense/protection needs  

(Pérez-Harguindeguy et al., 2013). Hence, certain traits may be used to predict 

ecosystem changes in response to environmental factors (Lavorel and Garnier, 2002; 

Suding et al., 2008).  

There are several metrics based on functional traits that may be used to 

describe the functional structure of plant communities. Among them, the community 

weighted mean (CWM) (Garnier et al., 2007) and functional diversity, are considered 

good predictors of ecosystem functioning (Valencia et al., 2015). The community 

weighted mean reflects the dominant traits in a community (Garnier et al., 2007). Its 

importance derives from the “mass ratio hypothesis” proposed by Grime (1998), which 

assumes that ecosystem functioning is largely determined by the trait values of the 

dominant species (Ricotta and Moretti, 2011). Functional diversity reflects the degree 

of functional dissimilarity within the plant community (Laliberte and Legendre, 2010). A 

high functional diversity suggests high niche differentiation, i.e. the co-occurrence of 

species with different functional strategies that may lead to a more complete use of 

resources, enhancing ecosystem functioning (Mouchet et al., 2010). Previous studies 

showed that changes in both the CWM and in functional diversity, were good indicators 

of changes in major ecosystem processes; for example, the CWM of maximum plant 

height and functional diversity of specific leaf area were associated with primary 
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productivity and decomposition rates, respectively (de Bello et al., 2010; Valencia et al., 

2015; Le Bagousse-Pinguet et al., 2019). 

Aridity acts as a strong environmental filter in drylands (Berdugo et al. 2020), 

affecting the plant community. Studies showed that aridity may change the dominance 

of different growth-forms (e.g. shrubs, species with a prostrate habit) (Fay et al., 2002) 

or of different plant sizes, e.g. selecting for smaller species (Gross et al., 2013). This 

may be because water stress increases the risk of cavitation, thus selecting for plants 

with lower stature. It may affect leaf traits, favouring stress-tolerant strategies e.g. 

evergreen leaves with low specific leaf area (SLA) (Wright et al., 2004; Costa-Saura et 

al., 2016). Yet, under extreme arid conditions these traits may be replaced by stress-

avoidant species with semi-deciduous leaves and high SLA (Gross et al., 2013; 

Berdugo et al., 2020). Aridity may also determine the type of root system; e.g. more 

superficial roots may be advantageous to maximize acquisition during short peaks of 

resource availability (Schenk and Jackson, 2002). Fruit type and dispersal strategies 

may be also influenced by aridity, as it may select for e.g. short-distance dispersal 

strategies as a way to reach favourable conditions for growth restricted to small 

microsites in arid environments (van Rheede van Outdshoorn and van Rooyen, 1999; 

Pueyo et al., 2008). The relative dominance of C3, C4 and crassulacean acid 

metabolism (CAM) plant photosynthetic pathways, closely linked to water and nutrient 

use efficiency, may also change in response to aridity. For instance, CAM plants are 

frequently found in semi-arid zones in tropical and sub-tropical regions (Medina, 

Olivares and Diaz, 1986). These studies highlight the importance of applying a trait-

based approach to measure the response of plant communities to climate (Gross et al., 

2013; Valencia et al., 2015; Nunes et al., 2017).  

Monitoring the response of the plant community to climate would be especially 

important for Brazilian dry forest locally called Caatinga where climate change, 

anthropogenic pressure and intensive and accelerated land-use intensification have 

been modifying substantially the natural landscape (da Silva and Barbosa, 2018; Sfair 

et al., 2018). These pressures may cause irreversible shifts in ecosystem services 

which nowadays support 28.6 million people (da Silva, Leal and Tabarelli, 2018). For 

this reason, studies assessing responses of the plant community functional structure to 

increasing aridity in the Caatinga should be a priority. To monitor these effects over 

time, long time-series would be required, which are often not available or sufficiently 

detailed for the target region. To overcome this limitation, a space-for-time substitution 

approach is an alternative widely used in biodiversity modelling to infer past or future 
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trajectories of ecological systems from spatial gradients (Matos et al., 2017; Nunes et 

al., 2017; Frasconi Wendt et al., 2020).  

The main objective of this study was to assess changes in plant functional 

structure along a wide regional climatic gradient in the Caatinga ecosystem, using a 

space-for-time substitution approach to infer potential consequences of climate change 

in these highly diverse and critically endangered areas. We addressed 13 functional 

traits related to plant strategies to deal with water limitations. We hypothesized that 

aridity is a strong environmental filter acting on the functional structure of plant 

communities in this tropical dry forest. We expect to find i) an increase in the relative 

abundance of drought-adapted traits towards stress-avoidant strategies (e.g., summer 

deciduousness) and ii) a reduction in functional diversity for most traits as a result of 

climatic filtering.  

 

3.3 Material and methods 

Site description and data sampling 

This study was carried out in Caatinga, a semi-arid seasonally dry tropical 

forest in Brazil. It covered a spatial climatic gradient with 113 sampling sites (10 x 10 

Km) including four Brazilian states (Alagoas, Ceará, Paraíba, Pernambuco, and Piauí) 

(Figure 3.1). Caatinga encompasses many vegetation types from open vegetation with 

rocky outcrops dominating in drier areas, to semi-deciduous forests dominating in 

richer and more humid soils (Fernandes and Queiroz, 2018). Along the study area 

mean annual precipitation was 680 mm (ranging from 440 to 1.098 mm), mean annual 

temperature 24 oC (ranging from 21oC to 26 oC), altitude varied between 278 and 930 

m, and the aridity index ranged from 0.27 to 0.69 (from more to less arid) (Hijmans et 

al., 2005). 
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Figure 3.1. Location of the study area within global drylands (left), and of the 113 sampling sites 
(black circles) distributed along the regional climatic gradient based on the aridity index, in 
northeastern Brazil.  

 

In this study, the list of the most abundant species was obtained by using a re-

sampling methodology applied to a species presence database as described in Oliveira 

et al. (2020). Thus, we used species occurrence to obtain a proxy of their abundance. 

To obtain species abundances based on presence data we divided each of the 113 

sampling units (10 x 10 Km) into 25 sampling quadrats of 2 x 2 Km. The abundance of 

each species was obtained by the sum of its presence at each small quadrat (2 x 2 

Km), with each species counted only once in each small quadrat (even if recorded 

more than once). In this way, the maximum abundance at the sampling unit level was 

25. This data allowed us to build an abundance database of the 80% most dominant 

species (48 species) distributed over 113 sampling units. For these 48 most abundant 

species (Table S3.1) we studied 13 functional traits: (1) growth form; (2) maximum 

plant height; (3) leaf phenology type; (4) leaf thickness; (5) specific leaf area (SLA); (6) 

root type; (7) dispersal strategy; (8) fruit type; (9) photosynthetic pathway; (10) 

spinescence presence; (11) presence of leaves arranged in a rosette; (12) chemical 

defense exudation; (13) rhytidome presence. These include continuous, categorical 

and binary traits reflecting plant strategies associated with their establishment, 

defense, regeneration, and dispersal (Lewinsohn and Vasconcellos-Neto, 2009; Pérez-

Harguindeguy et al., 2013). Trait data were obtained by direct field observations and 
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measurements following standard protocols (Pérez-Harguindeguy et al., 2013) (traits 1, 

2,  4, 5, 10, 12 and 13), or from the botanical collection of Herbarium Vale do São 

Francisco (HVASF), Petrolina, Pernambuco, Brazil (traits 6 and 8), or from other 

bibliographic sources (traits 3, 7, 9 and 11 - e.g., Griz and Machado, 2001). 

To assess changes in plant community functional structure along the climatic 

gradient, we used the community weighted mean (CWM) and functional diversity, using 

a single trait value (or category) per species. CWM represents the average trait value 

in a community weighted by the relative abundance of the species carrying each value 

(Garnier et al., 2007). For continuous traits, CWM values correspond to the mean value 

of that trait in the community, while for the categoric and binary traits, we did the 

calculations so that CWM values represent the proportion of each category in the 

community. To assess functional diversity, we calculated functional dispersion (FDis)  

(Laliberte and Legendre, 2010), which measures the degree of functional dissimilarity 

within the plant community. FDis is calculated as the weighted mean distance of 

individual species from the weighted centroid of all species in a multidimensional trait 

space, where weights correspond to species relative abundances (Laliberte and 

Legendre, 2010). FDis was calculated individually for each trait, using the Gower 

distance to handle continuous, ordinal, and categorical variables, as well as missing 

values. All calculations were performed with dbFD function of the FD package 

(Laliberté, Legendre and Shipley, 2015) in R (The R Core Team, 2018). 

We used the aridity index adopted by the United Nations as the main climate 

variable, retrieved from a global database (Trabucco et al., 2008). It is calculated as the 

ratio between mean annual precipitation and annual potential evapotranspiration; thus, 

higher values of the aridity index correspond to less arid environments and vice-versa. 

Yet, to make it more intuitive to the reader, we use the term aridity (calculated as 1-the 

aridity index) in the description of the results and in the discussion section. 

 

Data analysis 

  

To analyze the response of the plant community functional structure along the 

climatic gradient, we tested for significant relationships between aridity (the aridity 

index) and single-trait functional metrics (CWM and FDis) using Spearman correlations, 

to account for possible non-linear relationships. Correlations were considered 

significant for p < 0.05. All statistical analyses were performed using R version 3.4 (The 

R Core Team, 2018).  
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3.4 Results 

In general, the plant community in the study area was dominated by mostly 

deciduous trees with an average maximum plant height of 4 m (see CWM values in 

Table 3.1). Mean leaf thickness was 0.8 mm and mean specific leaf area (SLA) was 16 

mm2/mg (Table 1). Autochory dispersal was dominant in the plant community, followed 

by anemochory and zoochory, with 30% each (Table 3.1). In addition, the dominating 

root type was pivoting root. Fleshy fruits were present in 38% of the plants, 

crassulacean acid metabolism (CAM) in 18%, and spinescence in 28%, while 8% of the 

plants had leaves arranged in a rosette. Plants with chemical defense exudation and 

rhytidome presence represented 30% and 24% of the community, respectively (Table 

3.1).  

 

Table 3.1. Average community weighted mean (CWM) values (mean or 
percentage) for the 13 functional traits studied. The type of trait 
(categorical/continuous/binary) and their categories/units are indicated with their 
minimum and maximum values among plant communities. For categorical and binary 
traits, the minimum, maximum and mean values correspond to a percentage, while 
continuous traits values follow their units.    

Functional Traits Type Categories/Units Minimum Maximum Mean 

Growth form Categorical Herb 0 87% 14% 

  Shrub 0 33% 13.5 % 

  Tree 0 100% 72.5 % 
Average maximum 
height Continuous meters (m) 0.5 6 4 
Leaf phenology 
type Categorical Deciduous 12% 100% 8% 

  Evergreen 0 50% 8% 

Leaf thickness Continuous millimetres (mm) 0.15 2.0 0.80 

Specific leaf area Continuous mm2/mg 13 20 16 

Root type Categorical Adventitious 0 50% 8.25 % 

  
Fasciculata 0 28% 8.25 % 

  
Pivoting 25% 100% 67% 

  Tuberous 0 40% 16.5 % 

Dispersal strategy Categorical Anemochory 10% 67% 30% 

  Autochory 12% 78% 40% 

  Zoochory 0 70% 30% 

Fruit type Binary Presence Fleshy fruit 0 70% 38% 
Photosynthetic 
pathways 

Binary Presence 
Crassulacean acid 
metabolism 

0 75% 18% 

Spinescence 
presence Binary Thorn/acule 0 86% 28% 
Presence of leaves 
arranged in a 

Binary 

 0 50% 8% 
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rosette 

Chemical defense 
exudation 
presence 

Binary Latex/Resin 0 69% 30% 

Rhytidome 
presence Binary   0 56% 24% 

 

The CWMs of eight functional traits and FDis of six functional traits were 

significantly correlated with aridity (i.e. 1-the aridity index, to make the interpretation 

more intuitive; this term is used hereinafter) (Table 3.2), indicating a strong effect of 

aridity on the functional structure of the plant community. More arid sites showed a 

decreased abundance of evergreen leaf type, leaf thickness, autochory dispersal, and 

shrub growth-form, as evidenced by the negative correlation between CWMs and 

aridity (Table 3.2). In contrast, the presence of deciduous leaves, fleshy fruits, 

spinescence and chemical defense exudation increased towards drier sites, as well as 

zoochory dispersal and the abundance of CAM species (Table 3.2). More arid sites 

showed decreased functional dispersion for leaf phenology type and leaf thickness, 

and the opposite (higher FDis) for fruit type, photosynthetic pathway, spinescence 

presence and type of chemical defense exudation (Table 3.2). Five functional traits 

showed no consistent relationship with the aridity index, namely maximum plant height, 

specific leaf area, root type, presence of leaves arranged in a rosette and rhytidome 

presence.  
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Table 3.1. Significance of the spearman correlations between community 
weighted mean (CWM) and functional dispersion (FDis) values, with aridity (1- aridity 
index) for the 13 functional traits studied (n=113 sampling plots). Black circles represent 
positive correlations and yellow circles represent negative correlations. Circle 
dimensions represent the level of significance of the correlations: small circle (p < 0.05); 
medium circle (p < 0.01); large circle (p < 0.001). ns – no significant correlation. 

 

 

 

 

 

 

 



3. The response of plant functional traits to aridity in a tropical dry forest. 

69 
 

 

3.5 Discussion 

 

In this work, we found a strong impact of aridity on Caatinga plant functional 

structure along a comprehensive aridity gradient, supporting our general working 

hypothesis. The plant community showed increased deciduousness and abundance of 

defense traits, more cacti and bromeliads, and lower shrub abundance towards drier 

sites. Some of these changes point to an increase in stress-avoidant strategies under 

more arid conditions, partly supporting our first hypothesis. We also hypothesized a 

reduction in functional diversity with increased aridity as a result of climatic filtering. 

This was true for leaf traits, but not for functional diversity of fruit type, photosynthetic 

pathway, and defense traits which increased with aridity, suggesting a higher niche 

complementarity in drier sites. Overall, the shifts found in functional structure in 

response to aridity may affect plant structural complexity, spatial distribution patterns 

and biotic interactions, able to negatively affect key ecosystem processes. 

In addition, the effect of aridity was detected along our large climatic gradient, 

ranging from semi-arid to dry sub-humid areas, regardless of other environmental 

variations (e.g. soil, topography, land management) along the study area. This 

suggests that aridity acts as the main filter (hierarchically) at the regional scale, 

followed by the likely effects of other finer-scale local variables, and is in accordance 

with previous works showing that climate is a major driver of the floristic patterns of 

woody plant species in Caatinga (Silva and Souza, 2018). 

 

Changes in vegetative traits 

 

Higher aridity led to a decrease in functional diversity of leaf traits, coupled with 

an increase in the dominance of deciduous species with lower leaf thickness, a known 

plant stress-avoidant strategy to deal with water limitations, replacing the maintenance 

of more-costly thicker evergreen leaves characteristic of stress-tolerant ecological 

strategies (Lohbeck et al., 2015). This is in accordance with our working hypotheses 

and with what other studies found for extremely arid and seasonal environments 

(Carvajal et al., 2019; Berdugo et al., 2020), where the classical prediction of transition 

from fast to slow resource acquisition strategies as aridity increases (Wright et al. 
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2014) may become disadvantageous because slow traits are costly to maintain 

(Carvajal et al. 2019).  

Summer deciduousness leads to accumulation of litter on the soil surface. 

Previous studies show leaf fall may be responsible for 70% up to 80% of nutrient 

deposition in Caatinga (Santana and Souto, 2011; De Holanda et al., 2017), as rapid 

decomposition may occur after precipitation events (Fredson et al., 2009; Moura et al., 

2016). However, precipitation events are infrequent in Caatinga (Machado, Barros and 

Sampaio, 1997), and may become less and less frequent due to climate change, and 

that may reduce or even prevent leaf decomposition (Fredson et al., 2009; Moura et al., 

2016), resulting in accumulated litter for a long period below deciduous plants, a very 

common image in Caatinga as in other drylands.   

We also found a decrease in shrub growth form in drier sites suggesting that 

these areas have lower structural complexity, which may potentially affect habitat 

quality and biomass production, although we did not assess this. Contrastingly, the 

diversity of photosynthetic pathways increased towards drier conditions, probably due 

to an increase in the abundance of species with crassulacean acid metabolism (CAM), 

mainly cacti and bromeliads. This is a common strategy in arid environments, as CAM 

plants close their stomata during the day to avoid water losses and open them during 

the cooler more humid nighttime hours, allowing uptake of carbon dioxide (CO2) for 

carbon fixation (Medina, Olivares and Diaz, 1986). Although CAM plants are able to 

store water e.g. in vacuoles, they are more inefficient than C3 plants at absorbing CO2, 

and so they grow slowly (Medina, Olivares and Diaz, 1986). Thus, this change may 

affect biomass production.  

In short, the shift found in plant community functional structure towards more 

arid conditions regarding the vegetative traits analyzed, particularly concerning 

changes in growth-form dominance and increased leaf deciduousness, is likely to affect 

key ecosystem processes in Caatinga, namely primary productivity, litter 

decomposition (Cornwell et al., 2008) and carbon and nitrogen cycling (Milcu et al., 

2014). 

 

Changes in reproductive and defense traits  

 

Drier conditions led to an increase in the functional diversity of fruit types and in 

the abundance of fleshy fruited and zoochorous species, possibly affecting biotic 
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interactions with seed-dispersing animals in drier sites (e.g. lizards, birds and bats) 

(Leal, Lopes and Machado, 2006). The increase of zoochory dispersion with aridity is in 

accordance with previous studies performed in Caatinga (e.g. Griz & Machado, 2001), 

and seems to be mostly due to the increase in the relative abundance of CAM species 

(cactus) in drier sites, many of them zoochorous (Griz & Machado, 2001). Many 

Cactaceae´s species (e.g. Tacinga palmadora (Britton & Rose) N.P. Taylor & Stuppy; 

recorded in our study area), flourish and bear fruit in the dry season (Locatelli and 

Machado, 1999) ensuring food resources to fauna that may be beneficial for pollination 

and dispersion (Griz and Machado, 2001; Leal, Lopes and Machado, 2006; Lima and 

Rodal, 2010). This may also be the reason why anemochory is not the predominant 

dispersion strategy in our case, as suggested by Howe and Smallwood (1982) for dry 

environments. However, these authors considered only species richness (i.e. the 

number of species with a particular dispersal strategy) while we are taking into account 

also species abundance (i.e. trait abundance). 

However, the decrease in autochory dispersal in drier areas may affect plant 

spatial distribution in Caatinga, with potential negative effects on plant establishment. 

Autochory often originates a clustered distribution pattern (new plants clustered around 

the mother plant) providing “islands of fertility” with improved microclimate, facilitating 

seedling establishment, e.g. for cactus recruitment (Drezner, 2010; Landero and 

Valiente-Banuet, 2010). 

Spinescence and chemical exudation (i.e., latex and resin) increased in drier 

areas. These strategies can protect plants against pathogens and herbivores (Olofsson 

et al., 2004; Lewinsohn and Vasconcellos-Neto, 2009). They affect plant palatability 

and thus the level of herbivory, which may in turn change the quantity and quality of 

litterfall, affecting nutrient cycling (Olofsson et al., 2004).  Yet, the presence of these 

traits may have fitness costs to plants (Gassmann and Futuyma, 2004), most probably 

reducing the growth rates (Belovsky et al., 1991) and/or reducing the reproductive 

potential of plant populations in Caatinga under more arid conditions (Gómez and 

Zamora, 2002).  

 

Concluding remarks 

 

Overall, we found a strong impact of aridity on Caatinga plant functional 

structure, despite other environmental variations potentially acting at finer scales along 

the study area. The plant community in drier sites had increased deciduousness and 
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abundance of defense traits, more cacti and bromeliads, and lower abundance of 

shrubs. This shift may influence plant structural complexity, spatial distribution patterns 

and biotic interactions, which may have potential negative consequences for key 

ecosystem processes. Some of the changes found point to an increase in stress-

avoidant strategies under more arid conditions, partly supporting our initial hypothesis. 

Yet, contrary to our expectations, we did not find a reduction in functional diversity with 

increased aridity as a result of climatic filtering for most traits, except for leaf traits, and 

found the opposite trend (increase functional diversity) for fruit type, photosynthetic 

pathway, and defense traits, suggesting a higher niche complementarity in drier sites. 

Considering the predictions of increased aridity in the study area in the near future and 

assuming a space-for-time substitution, our results suggest that in the future we can 

use these functional traits to early warn us about the potential impacts of climate 

change on Caatinga. Additionally, this information about the response of plant 

functional traits along the aridity gradient may also contribute to guide preventive 

strategies (e.g. conservation of forest remnants) and/or corrective measures (e.g. 

include species with specific functional traits in restoration projects) to conserve this 

unique, remarkably diverse and highly threatened Caatinga ecosystem.  
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3.6 Supporting Information 

Table S3.2 Lista of the 48 most abundant plant species from the Brazilian dry 
forest (Caatinga).   

 

 

Family/Species Author 

ANACARDIACEAE  

Astronium urundeuva (M.Allemão) Engl. 

Schinopsis brasiliensis Engl. 

Spondias tuberosa Arruda 
  

APOCYNACEAE  

Aspidosperma pyrifolium Mart. & Zucc. 
  

BIGNONIACEAE  

Handroanthus impetiginosus (Mart. ex DC) Mattos 

 
 

BROMELIACEAE 

Bromelia laciniosa Mart. ex Schult. & Schult.f. 

Encholirium spectabile Mart. ex Schult. & Schult.f. 

Neoglaziovia variegata (Arruda) Mez 

Tillandsia loliacea Mart. ex Schult. & Schult.f. 

Tillandsia recurvata (L.) L.  

Tillandsia streptocarpa Baker 
 

 
BURSERACEAE 

Commiphora leptophloeos (Mart.) J.B.Gillett 
 

 
CACTACEAE 

Arrojadoa rhodantha (Gürke) Britton & Rose 

Cereus jamacaru DC. 

Harrisia adscendens (Gürke) Britton & Rose 

Melocactus zehntneri (Britton & Rose) Luetzelb.  

Xiquexique gounellei subsp. 
gounellei 

(F.A.C.Weber) Lavor & Calvente  

Pilosocereus pachycladus F.Ritter 

Tacinga inamoena (K.Schum.) N.P.Taylor & Stuppy 
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Tacinga palmadora (Britton & Rose) N.P.Taylor & Stuppy 

  

CAPPARACEAE  

Cynophalla flexuosa (L.) J.Presl 

Neocalyptrocalyx longifolium (Mart.) Cornejo & Iltis 

  

CHRYSOBALANACEAE  

Microdesmia rigida (Benth.) Sothers & Prance 
 

 
EUPHORBIACEAE  

Cnidoscolus quercifolius Pohl 

Croton blanchetianus Baill.  

Jatropha mollissima (Pohl) Baill.  

Jatropha ribifolia (Pohl) Baill.  

Manihot carthagenensis (Jacq.) Müll.Arg. 

Sapium glandulosum (L.) Morong 
 

 
FABACEAE 

Amburana cearensis (Allemão) A.C.Sm. 

Anadenanthera colubrina (Vell.) Brenan 

Bauhinia cheilantha (Bong.) Steud. 

Cenostigma pyramidale  (Tul.) E.Gagnon & G.P.Lewis 

Enterolobium contortisiliquum (Vell.) Morong 

Libidibia ferrea (Mart.ex Tul.) L.P.Queiroz 

Luetzelburgia auriculata (Allemão) Ducke 

Mimosa tenuiflora (Willd.) Poir.  

Parapiptadenia zehntneri (Harms) M.P.Lima & H.C.Lima 

Piptadenia retusa P.G.Ribeiro, Seigler & Ebinger 

Pityrocarpa moniliformis (Benth.) Luckow & R.W.Jobson 

Senna spectabilis (DC.) H.S.Irwin & Barneby 

Senna trachypus (Benth.) H.S.Irwin & Barneby 
  

  

MALVACEAE  

Pseudobombax marginatum (A.St.-Hil., Juss. & Cambess.) A.Robyns 

  

NYCTAGINACEAE  

Guapira noxia (Netto) Lundell 
  

RHAMNACEAE  

Sarcomphalus joazeiro (Mart.) Hauenshild 
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SAPINDACEAE  

Sapindus saponaria L. 
 

 
SAPOTACEAE 

Sideroxylon obtusifolium (Roem. & Schult.) T.D.Penn. 
 

 
 

 
SELAGINELLACEAE 

Selaginella convoluta (Arn.) Spring 
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4 Using plant functional groups as ecological 
indicators to track the effects of aridity in dryland 
ecosystems  

 

4.1 Abstract 

 

Increasing aridity associated with climate change may lead to the crossing of 

critical ecosystem thresholds, changing its structure and negatively affecting the 

functioning of drylands. This may aggravate land degradation in drylands (i.e. 

desertification), affecting ecosystem services essential to human well-being. Thus, 

finding tools to early detect the effects of increasing aridity on ecosystems is extremely 

urgent to avoid irreversible damage. Here, we assessed changes in plant community 

functional structure along a spatial aridity gradient in a tropical dry forest, to select the 

more appropriate plant functional groups as ecological indicators to track the 

ecosystem trajectories in response to aridity over time. To do that, we identified the 

main functional groups of the dominant plant species based on multiple traits, such as 

growth form, chemical defense and crassulacean acid metabolism (CAM) 

photosynthetic pathway. We identified seven functional groups, whose relative 

abundances changed with increasing aridity, showing either increasing or decreasing 

trends, not always linear. Functional groups with chemical defense and CAM were 

those whose relative abundance increased most with increasing aridity. We suggest 

that these functional groups may be used as a tool to early detect aridity impacts on 

these drylands ecosystems. This information can also be used to assist in the 

elaboration of mitigation and restoration measures to combat future climate change 

impacts on tropical dry forest. 
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4.2 Introduction 

 

There is growing scientific evidence that the increase in aridity due to climate 

change will cause shifts in ecological regimes (Berdugo et al. 2020). This is particularly 

important in drylands where water is the limiting factor to productivity. Thus, the 

increase in aridity is expected to impact considerably the structure and functioning of 

dryland ecosystems with consequences for the delivery of ecosystem services to the 

local populations (Nunes et al. 2017; Wendt et al. 2020; Oliveira et al., 2020a). In this 

regard, it is urgent to track the effects of climate change on ecosystems at an early 

stage, to delay or halt negative impacts on the ecosystem’s functions and structure.  

Plant diversity is a crucial component of the ecosystems, sensitive to changes 

over time and thus interesting to be monitored. Since the response of plant community 

to increasing aridity over time imply long-term studies requiring data that is often not 

available, we may study them thought short-term, spatial climatic gradients using a 

space for time approach, that may allow to select a few ecological indicators to track 

changes over time (Nunes et al. 2017; Wendt et al. 2020; Oliveira et al., 2020a). 

Ecological indicators based on plant functional traits are a reliable tool to measure the 

effects of increasing aridity on dryland ecosystems (Branquinho et al. 2019). This is 

because plant species ability to thrive under this context, will depend on the potential of 

their functional strategies to maintain their growth, reproduction, and survival. 

Functional traits metrics, in particular, have received increasing attention due to the link 

between plant functional traits and plants’ adaptative strategies to respond to 

disturbance (Valencia et al. 2015; Nunes et al. 2017; Oliveira et al., 2020a). In drier 

environmental conditions, an increase of drought tolerance plant strategies (more 

conservative) may be expected (Wright et al. 2004). However, in extremely arid and 

simultaneously seasonal environments, several studies reported an increase in drought 

avoidance strategies, particularly regarding leaf traits, namely higher specific leaf area 

and increased leaf deciduousness (e.g. Carvajal et al. 2019; Berdugo et al. 2020). This 

may be because in these resource-poor environments thicker leaves are more costly to 

maintain, and traits for fast water acquisition and use may allow plants to take 

advantage of short and often unpredictable periods of water availability. Additionally, 

aridity may favor species with lower stature (Gross et al. 2013), CAM photosynthetic 

pathways (Oliveira et al., 2020a), and annual life cycle (Nunes et al., 2017). Yet, plant 

functional traits do not vary independently, but often co-vary, involving trade‐offs or 

allometric relationships in biological functions like carbon gain, support, water uptake, 
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and reproduction that are associated with different plant organs (Kleyer et al. 2019). 

This co-variation has been shown extensively by summarizing variation in plant traits in 

main axes of plant specialization, enabling to identify major plant ecological strategies 

associated with resource use (e.g. acquisitive versus conservative) and “tolerance” 

towards limiting factors (e.g. drought tolerance versus avoidance). Indeed, these are 

the underlying reasons for grouping “functionally” similar species into functional groups.  

Aridity impact on the plant community is relatively less studied in tropical 

drylands (e.g. Ribeiro et al. 2019; Méndez-Toribio et al. 2020; Silva et al. 2020; Oliveira 

et al., 2020a) than in other drylands worldwide as the Mediterranean ones as well as 

grassland communities of other ecosystems (e.g. Frenette-Dussault et al. 2013; Gross 

et al. 2013; Valencia et al. 2015; Costa-Saura et al. 2016; Nunes et al. 2017). However, 

tropical drylands are home to the majority of the world´s dryland population and support 

ecosystem services to a million people (Mortimore et al. 2009). For instance, Brazilian 

dry forest, locally called Caatinga, shows a floristic diversity almost twice the highest 

species/area ratio of the Amazon rainforests (Fernandes et al. 2020) and support 

ecosystem services to 28.6 million people (da Silva et al. 2018b). It is crucial to study 

the effects of climate change on this ecosystem due to its ecological and social 

relevance and the fact that this ecosystem has been modified substantially due to 

climate change, anthropogenic pressure and accelerated land-use intensification (da 

Silva and Barbosa 2018; Sfair et al. 2018). 

Then, our question is: can plant functional groups be used as ecological 

indicators to track the effect of aridity on the plant community, to early warn us about 

ecological regime shifts?  To answer this question, we propose to assess changes in 

plant community functional structure along a spatial aridity gradient in Caatinga, by 

grouping plant species into functional groups based on multiple traits, such as growth 

form, chemical defense, and root type. 

 

4.3 Methods 

 

Study area 

Our analysis used plant data from long-term sampling along a spatial climatic 

gradient over an area of 750 x 350 Km, across five Brazilian states (Alagoas, Ceará, 
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Paraíba, Pernambuco and Piauí), covered by the Tropical dry forest locally called 

Caatinga (Figure 4.1). Caatinga is one of the most plant diverse Neotropical 

seasonally dry forest (Pennington et al. 2009; Banda et al., 2016) and the most 

vulnerable one to climate change in Brazil (Sarmiento 1975; da Silva et al. 2018). This 

ecosystem encompasses many vegetation types from semi-deciduous forests 

dominating in richer and more humid soils, to open vegetation with rocky outcrops 

dominating in drier areas (Fernandes and Queiroz 2018).  Along the study area mean 

annual temperature was 24 oC (ranging from 21 to 26 oC), average annual precipitation 

680 mm (spanning from 440 to 1098 mm), altitude ranged between 214 and 930 m, 

and the aridity index varied from 0.27 to 0.69 (Oliveira et al., 2020a). 

  

 

 

Figure 4.1 Location of the study area and the 113 sampling units (black circles) distributed 
along a regional aridity gradient.  
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Sampling  

Species composition and structural attributes were evaluated in 113 sampling 

units (10 x 10 Km) along the spatial aridity gradient. Species abundance of the 48 most 

abundant Caatinga plant species was used to form our main database. Species 

abundances were obtained by using a re-sampling methodology applied to a species 

presence database (Oliveira et al. 2020b). Each of the 113 sampling units was divided 

into 25 sampling quadrats of 2 x 2 Km. The abundance of each species was obtained 

by the sum of its presence at each quadrat of 2 x 2 Km, with each species counted only 

once in each small quadrat (even if recorded more than once). Then, the maximum 

abundance at the sampling unit level was 25 (for more details see Oliveira et al., 

2020b). For these 48 most abundant plant species, several functional traits were 

measured, namely: (1) chemical defense exudation mechanisms (hereafter chemical 

defense); (2) dispersal strategy; (3) fruit type; (4) growth form; (5) leaf phenology type; 

(6) leaf thickness; (7) maximum plant height; (8) photosynthetic pathway; (9) presence 

of leaves arranged in a rosette; (10) rhytidome presence; (11) root type; (12) specific 

leaf area (SLA); and (13) spinescence presence. These include continuous, 

categorical, and binary traits reflecting plant strategies associated with the 

establishment, defence, regeneration, and dispersal (Lewinsohn and Vasconcellos-

Neto 2009; Pérez-Harguindeguy et al. 2016). Trait data were measured directly in the 

field following standard protocols (Pérez-Harguindeguy et al., 2016; traits 1, 2, 4, 5, 10, 

12 and 13), extracted from other bibliographic sources (traits 3, 7, 9 and 11 - e.g., Griz 

and Machado 2001), or retrieved from the botanical collection of Herbarium Vale do 

São Francisco (HVASF), Petrolina, Pernambuco, Brazil (traits 6 and 8).  

We used the aridity index adopted by the United Nations as the main climate 

variable, retrieved from a global database (Trabucco et al. 2008). It is calculated as the 

ratio between mean annual precipitation and annual potential evapotranspiration; thus, 

higher values of the aridity index correspond to less arid environments and vice-versa. 

Yet, to make it more intuitive to the reader, we use the term aridity (calculated as 1-the 

aridity index) in the discussion section. 

Considering that functional traits is an “universal approach”, in the sense that 

they can be studied in any type of community, we elaborated a dichotomous key to 

identify the functional groups in loco in the Caatinga and in different tropical dry forest.  
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Data analysis 

The data were grouped into separate functional groups using hierarchical, 

agglomerative cluster analysis with Euclidean distances and Ward linkage method - 

function dbFD of package FD - (Murphy, 2004) and followed by visual inspection of the 

resulting dendrogram and consistency in the separation of the various traits that 

characterize the species. The classification was based on functional traits (13 traits). 

Categorical traits were coded as binary or ordinal values. The abundance of the 

resulting functional groups was correlated with the aridity index using Spearman 

correlations (correlations were considered significant for P < 0.05). In addition, the 

effect of aridity on the abundance of functional groups was analysed using generalized 

linear models (GLM). Given that the response of the plant community to aridity is not 

necessarily linear, a quadratic term for aridity was also included and tested in all cases. 

Response variables were log-transformed whenever necessary to meet model 

assumptions. All statistical analyses were performed using R software version 3.4 (The 

R Core Team 2018).  

 

 

4.4 Results 

 

The 48 most abundant plant species in Caatinga and your traits were 

aggregated into seven functional groups (FG) (Figure 4.2; Table 1 - supplementary 

material). These seven formed functional groups were represented by: shrubs or herbs 

without leaves arranged in a rosette and without CAM photosynthetic pathway (FG1) 

(hereafter CAM); trees with tuberous roots but without chemical defense (latex/resin) 

(FG2); deciduous trees with pivoting root but without chemical defense (FG3); 

evergreen trees with pivoting root but without chemical defense (FG4); trees with 

chemical defense (FG5); CAM plants without leaves arranged in a rosette (FG6); plants 

with leaves arranged in a rosette (FG7) (Figure 4.2; see dichotomous key).   
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Figure 4.2 Identification of functional groups through a cluster dendrogram of species based on 
the functional traits of the 48 most abundant species, using the clustering method by Ward.D2 
(Murphy, 2004). FG1 - shrubs or herbs without leaves arranged in a rosette and without CAM 
photosynthetic pathway; FG2 - trees with tuberous roots but without chemical defense 
(latex/resin); FG3 - deciduous trees with pivoting root but without chemical defense; FG4 - 
evergreen trees with pivoting root but without chemical defense; FG5 - trees with chemical 
defense; FG6 - CAM plants without leaves arranged in a rosette, and; FG7 - plants with leaves 
arranged in a rosette.  Abbreviated species names: Bche (Bauhinia cheilantha), Scon 
(Selaginella convoluta), Sspe (Senna spectabilis), Stra (Senna trachypus), Mcar (Manihot 
carthagenensis), Cbla (Croton blanchetianus), Jrib (Jatropha ribifolia), Acea (Amburana 
cearensis), Himp (Handroanthus impetiginosus), Laur (Luetzelburgia auriculata), Pmar 
(Pseudobombax marginatum), Cque (Cnidoscolus quercifolius), Mten (Mimosa tenuiflora), Psti 
(Piptadenia stipulacea), Pmon (Pityrocarpa moniliformis), Lfer (Libidibia ferrea), Ppyr 
(Cenostigma pyramidale var. pyramidale), Econ (Enterolobium contortisiliquum), Gnox (Guapira 
noxia), Acol (Anadenanthera colubrina), Pzeh (Parapiptadenia zehntneri), Zjoa (Sarcomphalus 
joazeiro), Cfle (Cynophalla flexuosa), Lrig (Microdesmia rigida), Nlon (Neocalyptrocalyx 
longifolium), Apyr (Aspidosperma pyrifolium), Ssap (Sapindus saponaria), Jmol (Jatropha 
mollissima), Sgla (Sapium glandulosum), Muru (Astronium urundeuva), Sbra (Schinopsis 
brasiliensis), Clep (Commiphora leptophloeos), Sobt (Sideroxylon obtusifolium), Stub (Spondias 
tuberosa), Tpal (Tacinga palmadora), Mzeh (Melocactus zehntneri), Tina (Tacinga inamoena), 
Cjam (Cereus jamacaru), Arho (Arrojadoa rhodantha), Hads (Harrisia adscendens), Pgou 
(Xiquexique gounellei subsp. gounellei), Ppac (Pilosocereus pachycladus), Tstr (Tillandsia 
streptocarpa), Tlol (Tillandsia loliacea), Trec (Tillandsia recurvata), Blac (Bromelia laciniosa), 
Espe (Encholirium spectabile), Nvar (Neoglaziovia variegata). 
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Dichotomous key for the identification of the functional groups for Tropical dry 

forest based on plant functional traits of the Caatinga  

 

1.  Herb or shrub ……………………………………………………….…….……. 2 

   2.  No CAM or leaves in rosete plants ………………………...…..…….… FG1 

   2´.  CAM or plants with leaves in rosette .………………………….....…....…. 3 

       3.  CAM plants ………….…….……………………………..…………….. FG6 

       3´.  Plants with leaves in rosette ……………………..…….……….…… FG7 

1´. Trees ………...……………………………..……………………...……………. 4 

      4.  With chemical defense …………………..……………….………….… FG5 

     4´.  Without chemical defense …………………………….………………...… 5 

         5.  Tuberous roots ………………………...…………………..…………. FG2 

         5´.  Pivoting roots ……………………………………………………….……. 6 

6. Deciduous plants ………………………………………...…………………… FG3 

6´. Evergreen plants ………………………………………………………..…… FG4 

 

Functional groups exhibited either a linear (FG1, FG2, FG4, FG5, and FG7) or 

non-linear (FG3 and FG6) response to increasing aridity (Figure 4.3). The relative 

abundance of FG1, FG2, and FG4 decreased linearly with increasing aridity, while the 

abundance of FG5 and FG7 increased. The slope of FG5 relationship with aridity was 

more pronounced than that of other functional groups, indicating higher rates of change 

in the relative abundance with changing aridity. There is an abrupt change in the 

response of the abundance of FG3 and FG6 to aridity index around 0.4. FG3 

abundance decreases linearly until 0.4, and it begins to increase after this threshold 

towards higher aridity, while FG6 shows the opposite trend (Figure 4.3).  
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Figure 4.3 Relationships between the relative abundance of seven functional groups and aridity 
modelled through generalized linear models (GLM).  FG1 - shrubs or herbs without leaves 
arranged in a rosette and without CAM photosynthetic pathway; FG2 - trees with tuberous roots 
but without chemical defense (latex/resin); FG3 - deciduous trees with pivoting root but without 
chemical defense; FG4 - evergreen trees with pivoting root but without chemical defense; FG5 - 
trees with chemical defense; FG6 - CAM plants without leaves arranged in a rosette, and; FG7 - 
plants with leaves arranged in a rosette. 

 

4.5 Discussion 

 

In this work, we identified seven plant functional groups which aggregate 

species based on various functional traits (e.g. roots, leaves and form of growth) and 

reflected co-variation between different traits. All of the seven functional groups 

responded to aridity but the groups with chemical defense and CAM photosynthetic 

pathway apparatus were the dominating ones in terms of relative abundance. This and 

the fact that they considerably change with aridity suggests that both functional groups 

(plants with chemical defenses and plant with CAM photosynthesis pathway) which are 

based on the existence of chemical defenses and the type of photosynthesis traits 

were the best ones to be used over time to track the effect of aridity on the tropical dry 

forest of Caatinga. Within this context and responding to our main question, plant 

functional groups may be used as ecological indicators to track the effect of aridity over 

time in tropical dry forests and to early warn us about ecological regime shifts.  

 

Chemical defense is strongly associated with plant protection towards herbivory 

and pathogens (Gómez and Zamora 2002; Olofsson et al. 2004; Lewinsohn and 
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Vasconcellos-Neto 2009), and only a few studies indicate their link with the regulation 

of water balance (Sen and Chawan 1972; Parkin 1990 apud Farrell et al. 1991)(Sen 

and Chawan 1972; Farrell et al. 1991) or with other abiotic factors (e.g. aridity) (Oliveira 

et al., 2020a). Due to its role as a defense mechanism against herbivory attacks (e.g. 

pathogens, insects and mammals), its presence can represent an indirect way to 

control nutrient fluxes and, consequently its influence on productivity, biomass, and 

species composition of plant communities (Hunter 2001; Frank et al. 2002; Olofsson et 

al. 2002). Thus, in environments with strong herbivory pressure, plants with protection 

against these predators have an advantage in relation to plants without this defense 

strategy. Plants without chemical defenses are more easily predated (Ribeiro et al., 

1999) and tend to decrease in abundance as herbivores pressure increases. In 

Caatinga, goats are important herbivores, as they can eat all parts of the palatable 

plants, from the flower to the litter (Leal et al. 2003). In 2017, nine million goats were 

estimated to live in Caatinga, and their pressure represents a threat to the composition, 

dynamics, and functioning of this ecosystem (Guimarães Filho and Goes, 1998). 

Having this in mind, under increasing aridity, the increase of the functional group 

represented by trees with chemical defense (FG5), may be more directly associated 

with the herbivory pressure of the environment, and only indirectly with water 

limitations. 

In terms of the photosynthetic pathway, CAM is a common strategy found in 

arid environments in which plants close their stomata during the day to prevent water 

losses and open them during the night to allow the uptake of carbon dioxide (CO2) for 

carbon fixation (Medina et al. 1986). In Caatinga, as well as, in other dryland 

ecosystems (e.g. America and Africa) this trait is present in succulent plants such as 

the emblematic Cactaceae that were the only representatives of FG6. Along the spatial 

climate gradient, the abundance of this functional group was relatively constant 

increasing above 0.5 of aridity index. They are easy to identify and given that their 

relative proportion increases with aridity, their abundance can be used as an ecological 

indicator to identify the trajectory to more arid environments. 

Meanwhile in less arid environments, shrubs and herbs without CAM and 

leaves not arranged in a rosette (FG1) tend to decrease its relative abundance with 

aridity. Shrubs as woody plants with shorter stature compared to trees, may minimize 

the hydraulic failure that occurs when water transport is disrupted in many embolized 

vessels (cavitation) due to water limitations (Urli et al. 2013; Gong et al. 2020). The 

presence of this strategy is important since it translates into resistance to drought-

induced xylem embolism (Gong et al. 2020). Although this strategy could be associated 
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with environments with water limitation (but nor only), this functional group decreases 

with aridity and is replaced by plants of the FG6 and FG7, which have CAM 

photosynthetic pathway and leaves arranged in a rosette, respectively. Then, these 

latter traits seems to be more advantageous to deal with the lack of water and its 

seasonality in more arid areas. 

Trees with pivoting roots but no chemical defenses, whether they are deciduous 

or evergreen (FG3 and FG4), tolerate less aridity than trees with chemical defenses. 

The root system of trees with tuberous roots has specific organs to store water and 

nutrients in response to water deficit stress (Mertens et al. 2017). Deciduous and 

evergreen leaf phenology types are associated with plants that drop their leaves during 

dry seasons (drought avoidance) and plants that retain their leaves throughout the year 

(drought tolerance), respectively. These leaf phenology types, together with other leaf 

traits (e.g. thickness), support photosynthesis and transpiration rates to avoid or 

conserve water during dry periods (Ackerly 2004; Markesteijn and Poorter 2009). 

Although the trees of the FG3 and FG4 have traits considered specific to deal with 

water limitation namely tuberous roots and leaf phenology type deciduous and 

evergreen they do not tolerate so much aridity as compared to the ones with chemical 

defenses. This result suggests that the limiting factor for survival and reproduction in 

the more arid area of the gradient is more directly related to herbivory than with the 

lack of water. 

The plants with leaves arranged in a rosette (FG7) have mechanisms to avoid 

water loss through traits that allow a decrease in the evaporative surface area and also 

that reduce the amount of the absorbed radiation from external to internal leaves 

(Neuner et al. 1999). The relative abundance of this functional group did not show 

substantial changes along the aridity gradient indicating that this functional group (FG7) 

is not the most appropriate to track the effects of aridity in tropical drylands. 

 

 

Concluding remarks  

Overall, our results showed that the two functional groups of plants with 

chemical defense and plants with CAM photosynthetic pathway may be appropriate 

ecological indicators to track the effects of aridity on the ecosystem in tropical drylands 

such as the Caatinga. In this context, more arid environments will be dominated by 
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trees with chemical defense. While in less arid environment deciduous with pivoting 

root but without chemical defense will tend to be dominant. 

Thus, the use of functional groups as ecological indicators can be a good tool to 

track the effects of aridity. This may be used to early warn about some thresholds that 

are expected to occur in drylands (Berdugo et al. 2020). Additionally, decision-makers 

can use these results as well as the dichotomous key for the identification of the 

functional groups, to delay or stop the reaching of thresholds that may cause a 

permanent change in the ecosystems. This means that restoration projects should 

include plants which prioritize not only the number of traits adequate for each aridity 

level but also the proportion of those traits. In this way it is expected to restore both 

traits diversity and the functionality of the ecosystem, thus ensuring essential 

ecosystem services for human well-being. 
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Supporting Information 
 

Table S4.1 Characterization of the seven functional groups identified according to 
the proportion of each of the 13 functional traits. For continuous traits values correspond 
to a range, while for categorical and binary traits values correspond to a percentage. FG1 
- shrubs or herbs without leaves arranged in a rosette and without CAM photosynthetic 
pathway; FG2 - trees with tuberous roots but without chemical defense (latex/resin); FG3 
- deciduous trees with pivoting root but without chemical defense; FG4 - evergreen trees 
with pivoting root but without chemical defense; FG5 - trees with chemical defense; FG6 
- CAM plants without leaves arranged in a rosette, and; FG7 - plants with leaves arranged 
in a rosette.   

 

 

Functional 
Groups/Units Categories FG1 FG2 FG3 FG4 FG5 FG6 FG7 

Growth form (%) 
Herbs 14 0 0 0 0 0 100 

Shrubs 86 0 0 0 0 0 0 

Trees 0 100 100 100 100 0 0 

Height (m - range)  0.2 - 5.4 3.0 - 5.5 3.5 - 8.0 2.0 - 6.0 2.0 - 8.0 0.4 - 3.5 0.2 -1.0 

Leaf thickness (mm 
- range)   0.15 - 0.84 0.9 - 2.0 0.41 - 1.55 0.58 - 0.89 0.60 - 0.92 NA NA 

Specific leaf area 
(mm2/mg - range)   13 - 22 16 - 18 13 - 23 51 - 21 83 - 24 NA NA 

Leaf phenology 
type (%) 

Deciduous 86 75 100 0 100 NA 0 

Evergreen 14 25 0 100 0 NA 100 

Leaves arranged in 
a rosette (%) 

With 0 0 0 0 0 0 100 

Without 100 100 100 100 100 100 0 

CAM (%) 
With 0 0 0 0 0 100 50 

Without 100 100 100 100 100 0 50 

Root type (%) 
Adventitious 0 0 0 0 0 0 100 

Fasciculated 43 0 0 0 0 40 0 

Pivoting 43 0 90 100 90 60 0 

Tuberous 14 100 10 0 10 0 0 

Fleshy fruit (%) 
With 0 0 0 75 70 100 0 

Without 100 100 100 25 30 0 100 

Dispersion (%) 
Anemochory 0 100 10 0 33.3 0 90 

Autochory 100 0 70 25 33.3 0 10 

Zoochory 0 0 20 75 33.3 100 0 

Spinescence (%) 
With 0 0 30 25 10 100 50 
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Without 100 100 70 75 90 0 50 

Chemical defense 
(%) 

With 43 0 10 0 100 0 0 

Without 57 100 90 100 0 100 100 

Rhytidome (%) 
With 0 75 30 25 10 0 0 

Without 100 25 70 75 90 100 100 
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Chapter 5 
 

 

How do taxonomic and functional diversity 

metrics change along an aridity gradient in 

Tropical dry forest?  

 

 

 

 

 

 

 

 

 

Oliveira, A.C.P., Nunes, A., Oliveira, M.A., Rodrigues, R.G. & Branquinho, C. (in 

preparation) How do taxonomic and functional diversity metrics change along an aridity 

gradient in Tropical dry forest? Intended for submission to Journal of Ecology. 
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5 How do taxonomic and functional diversity metrics 
change along an aridity gradient in Tropical dry 
forest?  

 

5.1 Abstract 

 

It is a consensus that anthropogenic threats and climate change can lead to 

ecosystem degradation and loss of ecosystem services that safeguard human well-

being. These negative expectations provide strong motivation to evaluate biodiversity 

loss or change in response to climate, to anticipate them and timely adopt mitigation or 

restoration actions. Here, we study the response of complementary plant taxonomic 

and functional diversity metrics along a spatial aridity gradient in a Tropical dry forest, 

to infer about potential impacts of climate change over time. We found diferent 

responses of taxonomic (species richness and Simpson index) and functional metrics 

(diversity and redundancy) to aridity. While species diversity showed a hump-shaped 

curve in response to aridity, functional diversity and redundancy showed a positive and 

a negative linear relation with increasing aridity, respectively. Thus, despite the 

increase in functional diversity of the plant community found towards drier sites, these 

are composed of a low number of species with unique functions and low functional 

redundancy. Our results suggest a high vulnerability (low redundancy) of this tropical 

dry forest to the increase in aridity predicted by climate change, since the potential loss 

of (even a few) species can lead to the loss of key ecosystem functions. We also show 

that the integration of complementary taxonomic and functional diversity metrics, 

despite the individual response of each one, is essential for reliably tracking the 

impacts of climate change in drylands in space and over time. 

 

Keywords: Caatinga; climatic gradient; functional redundancy; hump-shaped curve; 

space-for-time substitution.  
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5.2 Introduction 

 

Anthropogenic activities, climate change, and invasive alien species have led to 

a global biodiversity crisis, encompassing not only biodiversity loss but also biodiversity 

change (Jackson and Sax 2010; Dornelas et al. 2014; Branquinho et al. 2019). These 

losses and changes can affect ecosystem services and consequently human well-

being (Díaz et al. 2006). Thus, it is urgent to know the integrated response of 

biodiversity to global change drivers to anticipate irreversible damage and timely adopt 

adequate actions to mitigate impacts and, if possible, restore damaged ecosystems. 

This knowledge can avoid the crossing of tipping points (Dakos et al. 2019) and reduce 

mitigation and restoration costs, by implementing a proactive rather than a reactive 

approach (Walls 2018). 

Species richness, i.e., the total number of species, is traditionally and widely 

used as a proxy of taxonomic metrics for biodiversity assessments (Cadotte et al. 

2011). Previous studies showed plant species richness is positively related to the ability 

of ecosystems to maintain multiple functions, such as productivity and carbon storage, 

suggesting that conservation of plant diversity is crucial to minimize the negative 

effects of environmental change, particularly in drylands (Maestre et al. 2012). Yet, 

species richness provides rough information about a biological community, given that it 

does not consider species abundance, their representativeness nor their traits 

(Magurran 2004). Abundance and equitability of each species can also be included in 

taxonomic metrics (Ricotta 2005), such as the Simpson diversity index, which 

measures the probability of two random individuals in a community to belong to the 

same species (Ricotta 2005). Overall, taxonomic diversity metrics provide strong 

evidence that diversity promotes ecosystem stability and functioning, contributing 

significantly to many ecosystem services (Loreau 2000; Maestre et al. 2012; Mori et al. 

2018). Even so, taxonomic metrics consider all species and individuals as equivalents, 

(Magurran 2004; Cianciaruso et al. 2009), disregarding e.g. their functional role and 

how they affect ecosystem functioning (Naeem and Wright 2003).  

The study of species functional traits allows to overcome this limitation, 

providing a more mechanistic link between species and multiple ecosystem functions, 

such as primary productivity and nutrient cycling, as species influence these functions 

via their traits (Mason and De Bello 2013). Hence, functional diversity metrics have 

been increasingly used in addition to taxonomic metrics, as indicators of mechanisms 

driving changes in biological communities and as predictors of ecosystem functioning 
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(Petchey and Gaston 2006; Matos et al. 2017; Nunes et al. 2017; Sfair et al. 2018). 

Functional traits encompass morphological, behavioral and ecological differences 

among the individuals and species that can interfere with species growth, reproduction 

and survival (Violle et al. 2007).  

Despite the success of the use of functional diversity per se or jointly with 

taxonomic metrics in ecological studies, these alone do not reflect the ability of 

communities to ensure the maintenance of ecosystem functions in face of 

environmental changes (De Bello et al. 2007). In this context, the concept of functional 

redundancy was proposed by Walker (1992), corresponding to a measure of how much 

a community is functionally saturated by different species represented by analogous 

traits. In this regard, functional redundancy can be used as a measure of detecting 

potential loss of species that carry out unique roles in important ecosystem processes 

as well as reorganization and renovation of the ecosystem after the disturbance 

(resilience), which can significantly affect and change ecosystem functioning (Walker 

1992; Fonseca & Ganade, 2001; Hooper et al. 2005; de Bello et al., 2007; Pillar et al., 

2013). Due to the peculiarity and at the same time the complementary character of 

these metrics, it is important to evaluate how they change along environmental 

gradients, and how can we interpret the observed patterns to better anticipate changes 

in the structure and functioning of the ecosystems to be studied over time.  

Studying biodiversity changes along climatic gradients in space has become an 

important tool to understand potential changes over time due to climate change and 

has allowed to follow and anticipate abrupt changes in ecosystem structure and 

functioning. Dryland systems (composed of hyper-arid, arid, semi-arid and dry sub-

humid areas) are characterized by a combination of high evaporation, low rainfall, and 

human activities such as livestock grazing, the collection of wood and non-wood forest 

products, fire use, and soil cultivation (Pennington et al. 2009). These characteristics 

make drylands highly vulnerable to climate and environmental changes (Maestre et al. 

2012). Additionally, global dryland areas are expected to expand due to climate change 

(Dai 2011; Feng and Fu 2013; IPCC 2019; Koutroulis 2019). The global land surface 

occupied by drylands currently exceeds 47% and may increase an additional 7% by 

2100 (Koutroulis 2019).  

This study is focused on the vegetation of Caatinga, a Tropical dry forest with 

peculiar flora covering the semi-arid region of Brazil, and showing the highest 

vulnerability to climate change in that country (Sarmiento 1975; da Silva et al. 2018). A 

rise in temperature and a decrease in rainfall are expected to occur up to 2100 in 

Caatinga (IPCC 2011; Magrin et al. 2014; Buriti and Barbosa 2018). Climate change, 

together with anthropogenic activities, may lead to a decrease of primary production in 
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these ecosystems, further aggravating land degradation and affecting 28.6 million 

people highly dependent on local natural resources (da Silva et al. 2018b). In this 

context, the main objective of this study is to assess changes in plant taxonomic and 

functional diversity metrics along a spatial aridity gradient in the Caatinga ecosystem, 

assuming that these can give indications about climate change impacts over time. We 

hypothesized that complementary diversity metrics will respond differently to aridity in 

this tropical dry forest, namely that with increasing aridity we will find: (i) a decrease in 

species richness to only those highly adapted to drought (e.g., Maestre et al., 2012); (ii) 

a decrease in functional diversity due to environmental filtering (e.g., Nunes et al., 

2017); (iii) an increase in functional redundancy between species sharing the same 

drought-adapted traits (e.g., Fonseca and Ganade 2001; De Bello et al. 2007; Pillar et 

al. 2013). 

 

5.3 Methods 

Study area 

The present study was carried out along a regional aridity gradient over an area 

of 11 300 km2 covering four Brazilian states, namely Alagoas, Ceará, Paraíba, 

Pernambuco and Piauí (Figure 5.1). This gradient overlaps the Caatinga 

Phytogeographic Domain which has many vegetation types ranging from semi-

deciduous forests to open vegetation, located in rocky outcrops in driest areas 

(Fernandes and Queiroz 2018). The study area has a mean annual temperature of 24 

oC (ranging from 21 oC to 26 oC), average annual precipitation of 680 mm (spanning 

from 440 to 1098 mm), and an altitude between 278 m and 930 m (Oliveira et al., 

2020a). The aridity index varies from 0.27 to 0.69 including mostly semi-arid and humid 

(Oliveira et al., 2020a).  
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Figure 5.1. Map with the location of the study area (Adapted from Laboratório de Análise e 
Processamento de Imagens de Satélites – LAPIS) and the 113 sampling units (black dots) 
distributed along a regional aridity gradient.   

 

 

Data Sampling 

The database used in this work comprises the most abundant plant species 

from the Brazilian dry forest extracted from an initial database with presence records of 

937 plant species, collected between 2008 and 2015 within 32.300 Km2. To estimate 

species abundances based on presence data for these 937 plant species we divided 

each of the 113 sampling units (10 x 10 Km) into 25 sampling quadrats of 2 x 2 Km (for 

more details see Oliveira et al. 2020a). The sum of the presence records of each 

species at each small quadrat (2 x 2 Km) was considered a proxy of its abundance, 

with each species, counted only once in each quadrat (even if recorded more than 

once).  Thus, the maximum abundance at the sampling unit level was 25. With these 

data we built an abundance database and selected the most dominant species 

comprising 80% of species relative abundance, obtaining 48 species distributed in 17 

families and 42 genera. Fabaceae was the most frequent family (13 species), followed 
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by Cactaceae (eight species), Euphorbiaceae and Bromeliaceae (six species each) 

and Anacardiaceae (four species).  

Then, we used this database to calculate taxonomic and functional diversity 

metrics for each sampling unit to assess the response of plant communities to climate 

along an aridity gradient. Taxonomic diversity was calculated as total species richness 

(i.e., number of different taxa found) and the Simpson diversity index (Simpson 1949). 

To compute community functional metrics, we selected 13 functional traits, namely: (1) 

growth form; (2) maximum plant height; (3) leaf phenology type; (4) leaf thickness; (5) 

specific leaf area (SLA); (6) root type; (7) dispersal strategy; (8) fruit type; (9) 

photosynthetic pathway; (10) spinescence presence; (11) presence of leaves arranged 

in a rosette; (12) chemical defence exudation mechanisms; and (13) rhytidome 

presence. These comprise continuous, categorical and binary traits reflecting plant 

strategies associated with plant establishment, defence, regeneration, and dispersal 

(Lewinsohn and Vasconcellos-Neto 2009; Pérez-Harguindeguy et al. 2016). Trait data 

for the 48 most abundant species were measured directly in the field following standard 

protocols (Pérez-Harguindeguy et al., 2016; for traits 1, 2, 4, 5, 10, 12 and 13), 

retrieved from the botanical collection of Herbarium Vale do São Francisco (HVASF), 

Petrolina, Pernambuco, Brazil (for traits 6 and 8), or from other bibliographic sources  (  

for traits 3, 7, 9 and 11). We then calculated functional diversity (Rao’s quadratic 

entropy) and functional redundancy (De Bello et al. 2007; Pillar et al. 2013) for the plant 

community. Rao’s quadratic entropy (Rao’s hereinafter) is influenced by species 

abundance and diversity in their traits (Botta-Dukat 2005). In this index, the dissimilarity 

among species abundance range from 0 to 1 and is based on a set of functional traits 

(Botta-Dukat, 2005). All calculations were performed with the statistical software R 

(The R Core Team 2018), using the dbFD function of the FD package (Laliberté et al. 

2015). Functional Redundancy (FR), a feature related to the stability, resistance and 

resilience of ecosystems to environmental changes (Hooper et al. 2005; Guillemot et 

al. 2011), was also determined. Functional redundancy was obtained for each sampling 

unit through the differences between taxonomic diversity (using the Simpson diversity 

index) and functional diversity (using Rao´s quadratic entropy) (De Bello et al. 2007; 

Pillar et al. 2013). 

To characterize the climatic gradient, we used the aridity index adopted by the 

United Nations, whose values were retrieved from a global database (Trabucco et al. 

2008). The aridity index is calculated as the ratio between mean annual precipitation 

and annual potential evapotranspiration. Thus, lower values correspond to more arid 

environments, and vice-versa.  
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Data Analysis 

 

To evaluate the response of the plant community to aridity, we used the aridity 

index as a predictor to explain changes in community taxonomic and functional metrics 

(species richness, Simpson diversity index, Rao´s, and functional redundancy). The 

relationships between the aridity index and taxonomic and functional metrics were 

tested using general linear models, except for species richness (counts), which was 

analysed using generalized linear models (GLM) with Poisson distribution, accounting 

for overdispersion. For all models we included and tested a quadratic term for aridity, 

as the response of the plant community to aridity is not necessarily linear. Response 

variables were log transformed whenever necessary to meet model assumptions. All 

statistical analyses were performed using R software version 3.4 (R Core Team, 2018). 

 

5.4 Results 

Within the 113 sampling units distributed along the aridity gradient, species 

richness ranged between 8 and 45 of a maximum of 48 species (Figure 5.2 A). 

Simpson diversity index ranged from 0.87 to 0.98 (Figure 5.2 B). Functional diversity, 

represented by Rao’s, ranged from 0.03 to 0.15 and functional redundancy spanned 

from 0.57 to 0.71 (Figure 5.2 C and D, respectively). 
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Figure 5.2. Relationships between the aridity index and: (A) species richness; (B) Simpson 
diversity index; (C) functional diversity; and (D) functional redundancy. Solid and dashed lines 
represent the fitted linear or quadratic regression and 95% confidence intervals, respectively. 
Adjusted R2 and associated p-values are also shown.   

 

 

Taxonomic metrics, namely species richness and the Simpson diversity index, 

showed a significant hump-shaped relationship with the aridity index (lower value of the 

aridity index corresponds to higher aridity, and vice-versa), peaking at intermediate 

aridity levels, despite the considerable dispersion of values between sites (Figure 5.2 

A, B). This is supported by the best fit of the quadratic regression between taxonomic 

metrics and the predictor variable (Figure 5.2 A, B). Plant communities with a larger 

number of species were found within an aridity index ranging from 0.34 to 0.52. Most 

species showed a widespread distribution along the studied gradient (Figure 5.3). Yet, 

we found species with a more restricted distribution occurring in a minimum of 17% of 

sampled plant communities along the climatic gradient, while species with a higher 

distribution range occurred in a maximum of 70%. Despite many species are present 
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along the gradient (e.g., Anadenanthera colubrina (Vell.) Brenan, Fabaceae), although, 

with different abundances, there are also species of more restricted distribution, 

associated mainly with the most arid places (e.g, Cnidosculus quercifolius Pohl, 

Euphorbiaceae) and others to less arid ones (e.g., Microdesmia rigida (Benth.) Sothers 

& Prance, Chrysobalanaceae) (Figure 5.3). 

 

 

Figure 5.3. Boxplots showing the distribution of species’ presence along the aridity gradient 
ranked by median values. Abbreviated species´ names: Cque (Cnidoscolus quercifolius), Sobt 
(Sideroxylon obtusifolium), Jrib (Jatropha ribifolia), Stub (Spondias tuberosa), Tstr (Tillandsia 
streptocarpa), Clep (Commiphora leptophloeos), Sgla (Sapium glandulosum), Apyr 
(Aspidosperma pyrifolium), Cjam (Cereus jamacaru), Ppac (Pilosocereus pachycladus), Mzeh 
(Melocactus zehntneri), Tpal (Tacinga palmadora), Trec (Tillandsia recurvata), Blac (Bromelia 
laciniosa), Sbra (Schinopsis brasiliensis), Pgou (Xiquexique gounellei subsp. gounellei), Acol 
(Anadenanthera colubrina), Ppyr (Cenostigma pyramidale var. pyramidale), Arho (Arrojadoa 
rhodantha), Tina (Tacinga inamoena), Jmol (Jatropha mollissima), Espe (Encholirium 
spectabile), Cbla (Croton blanchetianus), Acea (Amburana cearensis), Muru (Astronium 
urundeuva), Pzeh (Parapiptadenia zehntneri), Pmar (Pseudobombax marginatum), Tlol 
(Tillandsia loliacea), Psti (Piptadenia stipulacea), Mten (Mimosa tenuiflora), Gnox (Guapira 
noxia), Lfer (Libidibia ferrea), Mcar (Manihot carthagenensis), Nvar (Neoglaziovia variegata), 
Hads (Harrisia adscendens), Cfle (Cynophalla flexuosa), Nlon (Neocalyptrocalyx longifolium), 
Zjoa (Sarcomphalus joazeiro), Bche (Bauhinia cheilantha), Sspe (Senna spectabilis), Himp 
(Handroanthus impetiginosus), Scon (Selaginella convoluta), Pmon (Pityrocarpa moniliformis), 
Laur (Luetzelburgia auriculata), Ssap (Sapindus saponaria), Stra (Senna trachypus),  Econ 
(Enterolobium contortisiliquum), Lrig (Microdesmia rigida). 

 

In contrast with taxonomic metrics, functional metrics, namely functional 

diversity and functional redundancy, showed a linear trend along the aridity gradient 

(Figure 5.2 C and D, respectively). Functional diversity increased towards more arid 

sites, displaying its highest values within an aridity index below 0.4 (Figure 5.2 C). 



5. How do taxonomic and functional diversity metrics change along an aridity gradient in 
Tropical dry forest? 

114 
 

Functional redundancy showed the opposite trend, increasing towards less arid 

conditions (Figure 5.2 D). 

 

 

5.5 Discussion 

In this study, we found different responses of taxonomic and functional diversity 

to the aridity gradient, highlighting the importance of using complementary metrics to 

better understand the response of the plant community to changes in climate. The 

hump-shaped curve displayed by species diversity (i.e. species richness and Simpson 

diversity index) found in our study, peaking at intermediate levels of aridity, was 

contrary to our first hypothesis. However, other authors also found similar curves to the 

one found in this work in other studies (Wilkinson 1999; Chawla et al. 2008; Soliveres 

et al., 2014).  

In our case, sites with intermediate aridity levels can be interpreted as an 

ecotone between semi-arid and more mesic sites, where most species, both from drier 

and more mesic environments, may co-exist, still finding adequate environmental 

conditions to survive (Gross et al. 2000; Mittelbach et al. 2001; Suding et al. 2005), at 

least in some sites. The co-existence of different species along this ecotone, can be 

related to a high environmental heterogeneity characteristic of Tropical dry forest  

(Moro et al. 2014; Oliveira et al. 2020b). For example, the typical intra and interannual 

irregularities in the distribution of precipitation in these regions (Moro et al. 2014; 

Oliveira et al. 2020b), either in space or over time, can lead to a heterogeneous 

distribution of vegetation, leading to high niche diversity allowing multiple species to 

coexist (Richerson and Lum 1980; Orians 1982; Pausas and Austin 2001).  

Even so, these conditions may vary greatly along space and over time 

depending on interannual climatic fluctuations and their legacies on the plant 

community over the years, and this may be the main reason for the high variation in 

species diversity among sites at intermediate aridity levels, displaying both very high 

and very low species diversity. This variation is much lower in the extremes of the 

gradient, where the consistently lower species diversity suggests that plants 

dominating in the two extremes have different ecological strategies to cope with water 

availability, the main limiting factor for plants in drylands. Species dominating in more 

arid conditions need traits that allow them to withstand long periods of drought, as is 

the case of e.g. Bromeliaceae species, which have leaves arranged in a rosette, that 
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function as “storage tanks” of water and facilitate the acquisition of nutrients (Takahashi 

et al. 2007). These strategies are different from the ones dominating in more mesic 

sites, where we found e.g. more evergreen trees such as Cynophalla flexuosa (L.) J. 

Presl (Capparaceae). Thus, species ability to persist and dominate in the plant 

community is a result of the environmental filtering of their traits (to deal with water and 

nutrient availability), and also of species interactions, e.g. their competitive ability under 

particular ecological conditions (competitors or stress tolerators, sensu Grime 1977) 

(Lloyd et al. 2000; Walker et al. 2003).  

The dominance of different plant ecological strategies in the extremes of the 

gradient is also supported by the results of functional diversity. The tendency for higher 

functional diversity in drier sites, suggests that higher aridity selects for particular 

drought-adapted species with diverse functional traits that allow them to avoid or 

tolerate those stressful conditions. An example is the coexistence of species with 

distinct photosynthetic pathways in drier sites, including the crassulacean acid 

metabolism (CAM) of Cactaceae species. Again, this may be related with a higher 

heterogeneity in resource distribution (higher niche differentiation) in drier sites, leading 

to the coexistence of species with dissimilar resource acquisition strategies (Adler et al. 

2001; Stubbs and Wilson 2004; De Bello et al. 2006). Yet, these findings contradict our 

expectations of finding a lower functional diversity in the more arid sites, as a result of 

environmental filtering, as was found for other (Mediterranean) drylands (e.g., Nunes et 

al., 2017). This contrasting result may be because our study (i) analysed different 

functional traits (e.g. chemical defense exudation, photosynthetic pathways and leaves 

arranged in a rosette), (ii) encompassed a greater geographic coverage (ca. 700 km), 

and (iii) considered a wider aridity range (aridity index from 0.27 to 0.69), compared to 

the one performed in Mediterranean drylands. 

The higher functional diversity found in drier sites, coupled with low species 

richness, led to a lower functional redundancy, contradicting our expectations (third 

hypothesis). This means that drier sites have few species with different functional traits 

and resource acquisition strategies, to cope with high niche differentiation in a 

heterogeneous environment where resources are scarce, thus avoiding competing for 

the same resources. Hence, as aridity increases, ecosystem functioning in this tropical 

dry forest is largely assured by only a few species with unique functions, displaying low 

functional redundancy. Within this context, the loss of species with key functions, or set 

of species that exhibited similar ecological functions, can compromise the stability, 

resistance and resilience and further increase the susceptibility (Fonseca and Ganade 

2001; Bellwood et al. 2003) of this ecosystem to changes in aridity.  This statement is 
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supported by the importance of: (i) species diversity in controlling the stability of 

ecosystems and communities (e.g., Lawton and Brown 1994; Ehrlich and Walker 

1998); (ii) functional diversity in improving the resistance of dryland ecosystems to 

aridity (e.g., Díaz and Cabido 2001; Volaire et al. 2014); (iii) species redundancy in 

ensuring ecosystem resilience to disturbance (e.g., McCann 2000).  

 

Concluding remarks 

 

Our results observed along a spatial climatic gradient are a proxy of what might 

happen with climate change over time and have alarming implications for the future of 

these drylands. Caatinga´s Tropical dry forests are among the most diverse drylands. 

Yet, despite its high plant functional diversity, our findings regarding low functional 

redundancy suggest a high susceptibility of this ecosystem to an increase in aridity due 

to climate change. In what concerns the management of Caatinga, the knowledge 

acquired in this work can be used as an early warning, to timely adopt strategies to 

improve its stability, resistance and resilience to future environmental changes. This is 

particularly relevant given that this ecosystem has already experienced an increase 

and rapid anthropic derived degradation (Sfair et al. 2018; Ribeiro et al. 2019). Extra 

negative impacts due to an increase in temperature and reduced precipitation 

associated with climate change, may lead to the loss of species with key traits, 

compromising the functioning of this ecosystem. Furthermore, these negative impacts 

can accelerate desertification processes, which will affect 28.6 million people highly 

dependent on local natural resources (da Silva et al. 2018). 

To sum up, the responses of complementary diversity metrics to aridity and the 

interdependence between them shown in this work, contribute to a better 

understanding of the susceptibility of this ecosystem to climate change, and may help 

to define strategies to improve the stability, resilience, and resistance to ongoing and 

future global changes in drylands.  
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6 General Discussion  

 

6.1 Main conclusions  

The main objective of this thesis was to identify potential ecological indicators, 

based on both taxonomic and functional plant diversity, which can be used as tools to 

monitor the effects of climate change on tropical dry forests. The motivation for this 

thesis was mainly based on the existence of: (i) a global problem, such as the impacts 

of climate change on ecosystems, (ii) a susceptible region – drylands - that cover 

approximately 47% of all terrestrial ecosystems and are home to 39% of the world’s 

population (Koutroulis 2019) and, (iii) a threatened ecosystem – the Tropical dry forest 

(Caatinga), where climate change coupled with other anthropogenic pressures, such as 

accelerated land-use intensification, have been substantially modifying the natural 

landscape (da Silva and Barbosa 2018; Sfair et al. 2018).  

Our results showed that: (i) it is possible to estimate plant species abundance 

from presence-absence data, even when data collection regarding plant species 

presence was uneven over time or space, (ii) aridity was the main environmental filter 

shaping plant community composition, as well as its functional structure, (iv) 

abundance of functional groups can be adequate tools to track changes in the structure 

and functioning of ecosystems, and (v) the complementary responses of taxonomic 

and functional diversity to aridity and their interdependence contribute to better 

understand the susceptibility of this ecosystem to climate change.  

These findings support the use of plant functional traits as ecological indicators 

in the context of the Tropical dry forest ecosystem and contribute to the understanding 

of how plant species and trait diversity respond to aridity. Furthermore, these results 

highlight the importance of using complementary diversity metrics to track the effects of 

increasing aridity on biodiversity. This knowledge is paramount to forecast shifts in 

plant communities as a response to climate change and give an important contribution 

to the development of measures/strategies to combat desertification and land 

degradation, providing science-based information to guide ecological restoration plans 

where ecosystem degradation could not be avoided. The conclusions of this thesis 

resulted from a work plan involving different steps. 

 

In Chapter 2 the abundance of the dominant plant species was estimated from 

presence/absence data obtained through an uneven sampling effort over large areas, 

using a resampling method. Estimating abundance from presence-absence data is a 
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crucial step, considering abundance data is essential to track biodiversity changes. In 

this chapter, we calculated the abundances of the most dominant plant species 

considering that they capture the main effects of environmental drivers (e.g. human 

activities and climate change) on key ecosystem processes (Grime 1998; Lavorel and 

Garnier 2002; Hooper et al. 2005). The resulting databases will be made publicly 

available (in press) and may now support biodiversity conservation studies and/or be 

used to study ecosystem structure and functioning. Additionally, the resampling 

methodology developed in this study may apply to other databases with similar 

characteristics.  

The approach presented in this study added value to the pre-existing plant 

species databases for Caatinga, expanding the baseline knowledge for studies 

concerning the biodiversity of this ecosystem at a local, regional, and global scales. At 

a local and regional scale, this contribution provides other information (e.g., percentage 

of endemism) beyond abundance data, reducing the knowledge gap about Caatinga, 

one of the most threatened and understudied dryland ecosystems of the world. At a 

global scale, the new database can contribute to the study of the impacts of climate 

change on the global loss and change of biological diversity in drylands. The availability 

of new databases is of great relevance, especially at a time when the challenge for the 

scientific community is to expand the network of shared knowledge. 

  

Based on the database of the most abundant species in the Caatinga 

distributed along a spatial aridity gradient, we found aridity was a major environmental 

filter of the plant community functional structure, affecting functional trait composition 

and diversity (Chapter 3). The results presented in chapter 3 show an increase in 

functional diversity with increasing aridity for fruit type, photosynthetic pathway, and 

defense traits, likely related to a higher niche complementarity in drier sites. The 

opposite trend was found for leaf traits (decreasing functional diversity), suggesting that 

an increase in aridity can result in climatic filtering for these traits. The concept of 

environmental filter predicts that some of the species or traits present at a regional 

scale, may be reduced or filtered out of the community on a local scale, because the 

range of successful strategies necessary to overcome the environmental filter is 

reduced, and thus species tend to have similar characteristics (Cornwell et al. 2006). 

These results suggest that functional traits can be used to predict the effects of climate 

change over time on Tropical dry forest. As functional traits are considered a “universal 

approach”, in the sense that they can be studied in any type of community, 

independently of the species identity, this approach can be replicated and expanded to 

other worldwide drylands. The application of this method to other drylands does not 
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imply the use of the same traits (e.g. crassulacean acid metabolism photosynthetic 

pathway) but can be based on other traits that, in a given community and ecosystem, 

respond to an increase in aridity. The extension of this study to other drylands is crucial 

considering the expected response of ecosystems to ongoing climate change, entailing 

abrupt changes in ecosystem structural and functional attributes, causing soil 

disruption, identified as one of the causes of critical threshold of change in drylands 

across the globe (Berdugo et al. 2020). 

 

In Chapter 4 we identified seven functional groups based on multiple functional 

traits. Functional groups with chemical defense and CAM photosynthetic pathway were 

those whose relative abundance increased most with increasing aridity. The more arid 

environments were dominated by trees with chemical defense, a higher proportion of 

cacti (with CAM) and bromeliads (with leaves arranged in a rosette). While in less arid 

environment trees without chemical defense, and shrubs or herbs without CAM were 

the dominant strategies. These changes observed along an aridity gradient can be the 

expected future scenario with increasing aridity in Tropical dry forest. Thus, monitoring 

the increase or reduction of functional groups’ abundance used as ecological 

indicators, may warn about the ongoing impacts of aridity on plant communities in the 

Caatinga. This finding can be extended as an early warning method for drylands on a 

global scale, for which there is evidence of critical thresholds reached in ecosystems 

caused by an increase in aridity (Berdugo et al. 2020). Therefore, expanding this on-

site vegetation-focused approach can be an effective tool (ecological indicator) for 

monitoring, tracking, diagnosing, and, consequently, providing an early warning of the 

impacts of aridity on the structure and functioning of each dryland. In addition, the on-

site vegetation-focused approach will allow to formulate mitigation and restoration 

actions tailored specifically for each dryland and thereby ensure the success of the 

actions on a local scale. 

 

In Chapter 5, the importance of using complementary metrics (taxonomic and 

functional) to better understand the response of the plant community to changes in 

climate are highlighted. Moreover, the response of functional redundancy, which is a 

metric that aggregates taxonomic and functional metrics was used. Functional 

redundancy can be used as a proxy of ecosystem stability, resistance, and resilience to 

disturbance. A low functional redundancy means that a few species with particular 

traits carry out unique roles in ecosystem processes. Thus, their potential loss as a 

consequence of environmental changes can dictate the loss of these functions, 

negativellly affecting ecosystem functioning, as there are no other ‘functionally similar’ 
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species that can continue to ensure them. Hence, it is an important informative metric 

to assess ecosystem vulnerability to environmental changes.This integrated knowledge 

of the response of compementary diversity metrics can be used to anticipate 

irreversible damage on ecosystem services, affecting human well-being (Díaz et al. 

2006). Also, based on the results shown in Chapter 5, it is possible to indicate priority 

areas for conservation and restoration in the Caatinga.  

As all drylands, tropical dry forests are highly vulnerable to climate change. 

Expanding the use of complementary diversity metrics to predict/determine the impacts 

of climate change on ecosystems and deepen the approach to assess functional 

redundancy, can be used to increase the stability, resilience, and resistance of dryland 

ecosystems, tropical or not, in the face of an aridity increase.  

 

6.2 Recommendations 

Based on the response of tropical dry forest plant diversity metrics to climate 

changes (i.e. aridity) (Chapter 3, 4 and 5), it is clear that the conservation of its 

remarckable biodiversity and plant communities, and associated ecosystem functions, 

is key to guarantee the resilience and functioning of this ecosystem in the face of global 

change pressures (e.g. climatic and anthropogenic). In agreement, the main 

recommendations based on the results of this work are: 

(a) To prioritise conservation areas, considering the response of plant 

diversity to climate change. The abundance of the dominant plant species, as well 

as, of rare, endemic, and endangered species, may be used as a basis for 

delimitation or creation of new conservation areas. Additionally, the abundance of 

the dominant plant species may be used to adapt management strategies (e.g. 

regarding grazing pressure). This is supported by the results presented, given that 

the use of the 48 most abundant plant species provided a strong and robust 

understanding of the response of biodiversity and ecosystem functioning to aridity: 

drier sites showed a higher functional diversity supported by few species with unique 

functions, which in turn may increase vulnerability and compromise ecosystem 

stability, resistance, and resilience. Ensuring the conservation of these most 

abundant species and their traits in semi-arid environments can minimize future 

shifts of the environment as a result of an aridity increase, especially at values 

below 0.36 of the aridity index. 
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(b) To select indicators that better track the effects on ecosystems, to 

anticipate and prevent a regime shift in dryland ecosystems. The desertification 

process is a typical process of shifts towards increased land degradation from a less 

to a more arid environment, with ecological as well as socio-economic dramatic 

consequences. Currently, about 1/3 of the Caatinga is turning into a desertified 

territory and almost 95% of the region, where this ecosystem is the main vegetation 

cover, shows moderate to high desertification risk (Vieira et al. 2015). Thus, another 

implication of our results would be to anticipate the impacts of aridity, but also, to 

combat the advance of the desertification process in the tropical dry forest.  

(c) To prioritise restoration areas and to integrate trait-based ecology, to 

ensure ecosystem functioning and resilience in face of climate change. By 

prioritising restoration areas, additional socioeconomic gains will also be obtained, 

because, without the conservation of the ecosystem and the prevention of possible 

shifts from the current to a ‘poorer’ alternative ecosystem stable state, the well-being 

of thousands of people will be affected. Consequently, post-degradation 

interventions, which are usually more costly in the short term than preventive 

measures, will have to be deployed. Interventive actions include the restoration of 

ecosystems´ composition and functions. Furthermore, our results suggest that the 

inclusion of a functional approach, e.g. exploring native aridity-resistant species, is a 

necessary tool in restoration ecology.  

 These recommendations, which include biodiversity conservation, prevention of 

desertification, and restoration, require the development of a new paradigm in the 

region: the inclusion of scientific knowledge and effective political actions is a necessity 

for the survival and maintenance of this region. Especially, if we aim to deliver 

sustainable ecosystem services, to promote well-being to citizens, while simultaneously 

protecting biodiversity and maintaining a healthy and productive ecosystem. 

 

6.3 Future challenges 

This work contributed to advance the knowledge on plant functional response to 

aridity and to understand its variation in space to be able to measure its trends over 

time. This is especially true for tropical drylands, where this approach is less 

studied/researched (e.g. Ribeiro et al. 2019; Méndez-Toribio et al. 2020; Silva et al. 

2020) when compared to other drylands worldwide, such as Mediterranean drylands 

and grassland communities of other ecosystems (e.g. Frenette-Dussault et al. 2013; 
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Gross et al. 2013; Valencia et al. 2015; Costa-Saura et al. 2016; Nunes et al. 2017). 

Based on the knowledge gathered, several future research lines can be drawn, such 

as: 

(a) To extend and validate the trait-based indicators of aridity impacts in 

other Tropical dry forests around the world (e.g., America and Africa). This is 

essential to confirm if the relationship found between functional structure and 

aridity for the analysed plant traits is representative of different geographic 

locations and taxonomic composition. 

(b) To combine phylogeny and plant functional traits. The phylogenetic 

information of communities contributes with the role of evolution in the 

assembly of communities and can help to predict the properties of ecosystems 

and provide responses to environmental changes (Webb et al. 2002; Cavender-

Bares et al. 2006).  

(c) To include the intraspecific variation in functional traits. Differences 

between individuals of the same species are important for community 

processes (e.g., functioning). For this reason, we hypothesize that the 

intraspecific variability can relate organisms present in the community more 

efficiently to ecological processes and environmental variables (Pachepsky et 

al. 2007). 
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